www.RIEVTECH.com

Installation and wiring
Programming
Configuring software

Applications
Technical data

RIEVTECH USER MANUAL
+ Programming guide

Ver. 2.0.0.1

http://www.RIEVTECH.com

Introduction 1
Valid range of this manual 2
Safety Guideline 2
Qualified Personnel 3
Prescribed Usage 3

Warning 3
Trademarks 3
Copyright Rievtech 2016 all rights reserved 4
Disclaim of Liability 4
Additional support 4

1 .what is Xlogic ? 5
1.1 Overview 5
1.2 Highlight feature 5
1.3 Some of the things xLogic can do for you? 7
1.4 xLogic devices: 7

xLogic Basic is available in two voltage classes 7
Expansion modules 8
Communication cable and module 8

2. Hardware introduction 11
2.1 Naming Rules of PR Series PLC 11
2.2 Hardware model selection 11
2.3 Structure & dimension 13

3 .Installing/removing xLogic 16
Dimensions 16
3.1 DIN rail mounting 17
3.2 Wall-mounting 18
3.3 wiring xLogic 21
3.4 Connecting the power supply 21

3.4.1 Connecting xLogic inputs 22
3.4.2 Connecting xLogic Outputs 25
3.4.3 Communication port instructions: 28

4.Quick reference manual 30
4.1 Special memory area: 30
4 2Interrupt Events: 30
4.3 High speed counter: 30

X Ladder direction for use 32

5.The detailed annotation of operation interface 32
5.1The main menu 32

5.1.1File 32
5.1.2 Edit 33
5.1.3 View 33
5.1.4PLC 35
5.1.5 Debug 36
5.1.6 Help 36

5.2 toolbar
5.3 Instruction tree

5.4 Programming concepts

5.5 How to enter the ladder logic program

5.6 How to set up a communication and download program

5.7 How to monitor and debug the program
5.8 PLC operation and options
6.X Ladder instructions descriptions
6.1 Bit logic

5.3.1 Project
5.3.2 Data block

5.3.3 System block

5.3.4 Program block

5.3.5 Function symbol

5.3.6 Variable symbol
5.3.7 Status chart

5.3.8 Cross reference
5.3.9 Communication

5.3.10 Instructions

5.3.11 The program editor

5.3.12 Status chart, information output

5.4.1 How the program works

5.4.2 Addressing overview

5.4.3 How to organize the program

5.5.1 How to build a new project

5.5.2 Ladder logic element and its working principle
5.5.3 Network rules for series and parallel in LAD

5.5.4 How to input commands in LAD

5.5.5 How to enter the address in LAD

5.5.6 How to edit program elements in LAD
5.5.7 How to use find / replace

5.5.8 How to display errors in LAD in the program editor

5.5.9 How to compile in LAD
5.5.10 How to save the project

5.6.1 Communication settings

5.6.2 Download program
5.6.3 How to correct compilation errors and download errors

37
40
41
41
42
48
48
48
49
49
50
51
52
53
54
54
54
56
57
57
57
58
58
60
60
63
64
64
65
65
65
67
68

6.1.1 Normally open and normally closed

6.1.2 Normally open immediate and normally closed immediate.

6.1.3 NOT Reverse instruction

6.1.4 Rising edge and falling edge

6.1.5 Output
6.1.6 Output immediate

6.1.7 Set and reset

69
73
74
74
74
76
76
7
78
78
79

6.2 Clock instruction

6.3 Communication

6.4

6.5 Convert

6.6 Counter

6.7 Floating point calculation

6.1.8 Set immediate and reset immediate

80

6.1.9 SR instruction

80

6.1.10 RS instruction
6.1.11 NOP instruction

81
82

83

6.2.1 Read and set the real time clock

83

84
84

6.3.1 Get port address
6.3.2 Set port address

84

Compare

85
85

6.4.1 Byte compare
6.4.2 Integer comparison

87

6.4.3 Double integer comparison

88

6.4.4 Real number comparison

89
90

6.4.5 String comparison

91

6.5.1 Byte to integer

91
92

6.5.2 Integer to byte
6.5.3 Integer to double integer

92

6.5.4 Integer to string

92

6.5.5 Double integer to integer
6.5.6 Double integer to real number

94
94

6.5.7 Double integer to string

95

6.5.8 BCD to integer, integer to BCD conversion
6.5.9 ROUND

96
97

6.5.10 TRUNC

98

6.5.11 Real number to string

99

6.5.12 Integer to ASCII code
6.5.13 Double integer to ASCII code

6.5.14 Real number to ASCII code

6.5.15 ATH&HTA

6.5.16 String to integer
6.5.17 String to double integer

6.5.18 String to real number
6.5.19 DECO

6.5.20 ENCO

6.5.21 Seven segment code

6.6.1CTU

6.6.2CTD

6.6.3CTUD

6.7.1 ADD-R&SUB-R

6.7.2 MUL - R&DIV -R

101
103
104
106
107
109
111
113
114
115
116
116
117
118
119
119
121

6.7.3 SQRT 122

6.7.4 SIN 123
6.7.5 COS 124
6.7.6 TAN 125
6.7.7LN 126
6.7.8 EXP 127
6.7.9 PID 128
6.8 Integer operations 131
6.8.1 ADD-1&SUB-I 131
6.8.2 ADD- DI & SUB- DI 133
6.8.3 MUL & DIV 134
6.8.4 MUL -| & DIV-| 135
6.8.5 MUL -DI & DIV -DI 137
6.8.6 INC-B & DEC-B 138
6.8.7 INC-W & DEC-W 139
6.8.8 INC -DW & DEC -DW 140
6.9 Interrupt 141
6.9.1 ENI & DISI 141
6.9.2 RETI instruction 143
6.9.3 ATCH 144
6.9.4 DTCH 146
6.9.5 Clear interrupt event 148
6.10 Logic operation 149
6.10.1 INV-B 149
6.10.2 INV -W 150
6.10.3INV -DW 151
6.10.4 WAND-B. WOR -B. WXOR -B 152
6.10.5 WAND-W. WOR -W. WXOR -W 153
6.10.6 WAND- DW. WOR -DW. WXOR -DW 154
6.11 Move 155
6.11.1 Byte move 155
6.11.2 Word move 156
6.11.3 Double word move 157
6.11.4 Real number move 158
6.11.5 BLKMOV -B 159
6.11.6 BLKMOV -W 160
6.11.7 BLKMOV -D 161
6.11.8 SWAP 162
6.11.9 MOV -BIR 163
6.11.10 MOV -BIW 163
6.12 Program control 164
6.12.1 FOR. NEXT 164
6.12.2 Jump to label and label 166

6.12.3 Sequence control relay 167

6.12.4 Return from subroutine

6.12.5 Conditional end

6.12.6 STOP

6.12.7 Watchdog Reset
6.12.8 Diagnosis LED

6.13 Shift cycle

6.13.1SHR-B & SHL -B

6.13.2 SHR -W & SHL -W

6.13.3 SHR -DW & SHL -DW

6.13.4ROR -B & ROL -B

6.13.5ROR -W & ROL -W

6.13.6 ROR -DW & ROL -DW

6.13.7 SHRB

6.14 Character string

6.14.1 String length

6.14.2 Copy string
6.14.3 SSTR-CPY

6.14.4 String catenate

6.14.5 STR -FIND

6.14.6 Look for the first character in the string

6.15 Table

6.15.1 Last in first out

6.15.2 FIFO

6.15.3 Add to table

6.15.4 Memory fill
6.15.5 Table Find

6.16 Timer

6.16.1 Switch on delay timer
6.16.2 TONR

6.16.3 Disconnect delay timer

6.16.4 Start time interval

6.16.5 Calculation interval time

6.17 Pulse train output

6.17.1 Pulse output
6.17.2 Pulse width modulation

6.18 Subroutine

6.18.1 Using subroutine
6.18.2 Using parameters to call subroutine

6.18.3 How to set up a subroutine

6.18.4 How to call a subroutine

7.PLC storage area

7.1 Storage area types and properties

7.2 Direct and indirect addressing
7.3 Bit, byte, word and double word access

169
170
171
172
173
174
174
176
177
178
179
180
181
182
182
183
184
185
186
187
188
188
190
192
194
195
197
197
199
200
201
202
203
203
205
206
206
207
208
209
212
212
213
216

7.4 Memory address range
7.5 Data type

7.6 Constant
8.Assignment and function of SM special storage area
9.Easy ladder communication

9.1 PR series PLC basic introduction of network communication

9.2 PR series PLC communication

9.3 Optimize network performance
10.Additional chapter

10.1 How to switch PLC mode

10.2 Value range of analog quantity:
10.3 Extension module address

10.4 PLC host address range

10.5 Formula

10.6 Set extension module address with a dial switch

10.7 Additional instructions

10.7.1 LCD related instructions

10.7.2 CAN, serial port initialization instructions
10.8 Example of serial port free port communication

10.9 Example of CAN free port

10.10 MODBUS communication master program
10.11 The example of using PID instruction

MODBUS ADDRESS

216
217
218
219
220
220
222
230
231
231
232
232
233
233
234
235
235
244
245
247
249
250
254

Introduction

Congratulations with your xLogic Micro PLC provided by Rievtech
Electronic Co., Ltd.

The xLogic Micro PLC is a compact and expandable CPU replacing mini PLCs,
multiple timers, relays and counters.

The xLogic Micro PLC perfectly fits in the space between timing relays
and low-end PLCs. Each CPU incorporates not only a real-time clock and
calendar, but also provides support for optional expansion 1/0 modules
to enhance control and monitoring applications. Data adjustments can
easily be performed via the keypad, the LCD display, or through the
Rievtech-to-use xLogic soft. DIN-rail and panel-mounted options are both
available, offering full flexibility to the various installation needs
of your application.

The xLogic Micro PLC 1s available in 120V/240V AC or 12V and 24V DC versions,
making it the ideal solution for relay replacement, or simple control
applications as building and parking lot lighting, managing automatic
lighting, access control, watering systems, pump control, ventilation
systems, home automation and a wide field of other applications demanding
low cost to be a primary design issue.

We strongly recommended taking the time to read this manual, before
putting the xLogic Micro PLC to work. Installation, programming and use
of the unit are detailed in this manual. The feature-rich xLogic Micro
PLC provides a for off-line operation mode, allowing full configuration
and testing prior to in-field service commissioning. In reviewing this
manual you will discover many additional advantageous product properties,

it will greatly simplify and optimize the use of your xLogic Micro PLC.

Valid range of this manual
The manual applies to devices of PR series PLC.
Safety Guideline

This manual contains notices you have to observe in order to ensure your
personal safety, as well as to prevent damage to property. The notices
referring to your personal safety are highlighted in the manual by a safety
alert symbol; notices referring to property damage only have no safety
alert symbol. The notices shown below are graded according to the degree

of danger.

Caution
Indicates that death or severe personal injury may

result if proper precautions are not taken

Caution
With a safety alert symbol indicates that minor
personal injury can result if proper precautions are

not taken.

Caution
Without a safety alert symbol indicates that property
damage can result if proper precautions are not taken.
Attention
Indicate that an unintended result or situation can
occur 1f the corresponding notice is not taken into

account.

IT more than one degree of danger is present, the warning notice

representing the highest degree of danger will be used. A notice warning

of Injury to persons with a safety alert symbol may also include a warning

relating to property damage.
Qualified Personnel

The device/system may only be set up and used in conjunction with this
documentation. Commissioning and operation of a device/system may only
be performed by qualified personnel. Within the context of the safety
notices in this documentation qualified persons are defined as persons
who are authorized to commission, ground and label devices, systems and
circuits in accordance with established safety practices and standards.
Please read the complete operating instructions before installation and
commissioning.

Rievtech does not accept any liability for possible damage to persons,
buildings or machines, which occur due to incorrect use or from not

following the details.
Prescribed Usage
Note the following:
Warning

This device and its components may only be used for the applications
described in the catalog or the technical description, and only in
connection with devices or components from other manufacturers which have
been approved or recommended by Rievtech. Correct, reliable operation of
the product requires proper transport, storage, positioning and assembly

as well as careful operation and maintenance.

Trademarks

All names identified by xLogic are registered trademarks of the Rievtech.
The remaining trademarks in this publication may be trademarks whose use

by third parties for their own purposes could violate the rights of the

owner.

Copyright Rievtech 2016 all rights reserved

The distribution and duplication of this document or the utilization and
transmission of its contents are not permitted without express written
permission. Offenders will be liable for damages. All rights, including
rights created by patent grant or registration of a utility model or design,

are reserved.

Disclaim of Liability

We have reviewed the contents of this publication to ensure consistency
with the hardware and software described. Since variance cannot be
precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary

corrections are included in subsequent editions.

Additional support

We take pride in answering your question as soon as we can:

Please consult our website at www.rievtech.com for your closest point of

contact or email us at sales@rievtech.com

http://www.rievtech.com
mailto:sales@rievtech.com

1 .what is Xlogic ?
1.1 Overview

xLogic is a universal logic module made by Rievtech.

xLogic , a compact, expandable CPU that can replace mini PLC, multiple
timers, relays and counters, Splitting the difference between a timing
relay and a low-end PLC, Each CPU has a real-time clock and calendar,
and supports optional expansion 1/0 modules to enhance your control and
monitoring applications . Data adjustments can be done via the on-board
keypad and LCD display, or with xLogic soft. It can be either DIN-rail
or panel mounted, depending upon the needs of your application, and it
is available in 120V/240V ac as well as 12V and 24V dc versions, and it
is the ideal solution for relay replacement applications, simple control
applications such as building and parking lot lighting, managing
automatic lighting, access control, watering systems, pump control, or
ventilation systems in factory, and home automation and applications in

which cost 1s a primary design issue.
1.2 Highlight feature

I Multiple value display and input via keypad and LCD display.

1 Unique ladder diagram, improves your programming efficiency.

1 Standard Modbus RTU/ASCII/TCP communication protocol supported.

I It’ soptional for xLogic to act as slave or master in certain Modbus
communication network. (easy connect to other factory touch screen by
RS232 cable, RS485 module)

I Support free port communication, CAN communication and MODBUS
communication

I Expandable up to 16 Iinked 10 expansion modules reaching 282 1/0 points
In maximum

1 Optional RS232, RS485 connectivity

I Multiple channels analog inputs available with DC 0-10V signal ,PT100

signal& 0/4---.20mA.

Default Real Time Clock (RTC) and summer/winter timer is
available

Backup at Real Time Clock (RTC) at 25 ° C:20 days

4 channels high-speed counting

Pre-configured standard functions, e.g. on/ off-delays, pulse relay
and softkey

2 PWM channels(10KHz in maximum)

Retentive memory capability (Not applied to PR-6&PR-12-E series CPU)
RS232 and USB communication download cable with photo-electricity
isolation

Support ladder diagram programming(Not applied to PR-6&PR-12-E series
CPU)

Mounting via modular 35mm DIN rail or screw fixed mounting plate
On-line monitor capability(Free charge SCADA for all series xlogic)
Datalogging

Kinds of analog signals process capacity (DC 0..10V ,0/4...20mA and
PT100 probe inputs and DC 0..10V and 0/4...20mA outputs)

Low cost

1.3 Some of the things xLogic can do for you?

The xLogic Micro PLC provides solutions for commercial, industrial,
building and

domestic applications such as lighting, pumping, ventilation, shutter
operations or in switching cabinets. The application field i1s widespread
and these are just a few to mention.

Using the RS485 bus and Ethernet connectivity allows the user to realize
various extensive (real-time) monitoring and control applications.
Special versions without operator panel and display unit are available
for series production applications in small machine, installation and

cabinet building environments to further slash cost.
1.4 xLogic devices:

xLogic Basic is available in two voltage classes:

*Classes 1:DC12-24V: 1.e.: PR-6DC Series, PR-12DC series, PR-18 series,
PR-24DC series.

*Classes2: AC110-240V: i.e.: PR-6AC Series, PR-12AC series, PR-18AC

series , PR-24AC series.

In the versions:

* With Display: with “-HMI” model, such as PR-12DC-DA-R-HMI

* Without Display: PR-6 series and with “-CAP” model, such as
PR-12DC-DA-R-CAP. Only PR-12 has -CAP version. PR-18,PR-24 all have
display in default.

Expansion modules:

PR-E (applied to PR-18/PR-24 CPU)

* xLogic digital modules are available for operation with 12---24V DC, and
110.. .240 V AC, and are equipped with eight inputs and eight outputs.
* xLogic analog modules are available for operation with 12---24 V DC and
are equipped with six digital and 4 analog inputs.
Communication cable and module:

I xLogic:RS232 communication cable (Model:ELC-RS232)

It 1s kind of universal cable with photoelectricity isolation which can
be directly connected to standard 9-pin port of PC, also kind of interface
module which can enable user’ s program to be downloaded into xLogic CPU
through xLogicsoft for running. It also is the connection cable between
CPU and third party device with the RS232 port(just like HMI) in modbus
communication system.

I xLogic: USB communication cable (Model: ELC-USB).

It is kind of communication cable with photoelectricity isolation through
which PC with USB port only can be connected to xLogic main module,
moreover, it has same features as ELC-RS232 module, so it is quite
convenient for user whose computer has no standard serial port.

I xLogic: PRO-RS485 cable (Model: PRO-RS485).

It i1s kind of converter cable with photoelectricity isolation to make the
program port serves as RS485 port.

I xLogic: RS485 module (Model: PR-RS485)

isolated 485 converter,used to bring out the terminals of RS485 port

built-in PR-18,PR-24 series CPU for connection with third party devices.

Communication / Network

xLogic offers different ways to communicate within the system.

RS485 port

The RS485 port is used for communication between the CPU and various
devices or equipments which have the standard RS485 port. Communicate

using Modbus RTU/ASCII protocol.

Master PLC#1 PLC#4

. —{ eeese
i |
Rs485 IEE!

Note: PR-RS485 module is required to connect the CPU to RS485 BUS.
RS232 or USB port (ELC-ES232/ ELC-USB needed)

IT there is no network required and only one main module with some
expansion modules is needed for the application, the down- and upload of
the project to and from the main module happens over the standard RS232

or USB port. It allows system maintenance like monitoring too.

Rs232

1 Slave
Master b liliadsssail

S | cslave #1 slave #2 slave #3

Hl @ - -
I RS483% BUSI l

Master

Note: PR-E-RS485 module is required to connect the CPU to RS485 BUS.

Note
xLogic CPU may be equipped with expansion modules of the different voltage
class, but expansion module must be supplied the correct power

corresponding to its type.

10

2. Hardware introduction

2.1 Naming Rules of PR Series PLC

L-0-01

PR - E-()
I

1l

3

1.Series name

2_E: expansion module
3.Points of Input and output
4.Supply power AC or DC

5.Digital/Analog D: digital DA: digital/analog

- - « » H - € » H
6.0utput type R:relay TP: “NPN” transistor; TN : “PNP” transistor
PR-12 Series CPU Units(None expandable)
Expansio
Model Supply voltage Inputs Outputs High-speed count PWM HMI RTC
n
PR-12AC-R-HMI no AC110~AC240V 8 digital 4 relays (10A) no no yes yes
PR-12DC-DA-R-HMI no DC12-24Vv 4(0...10V)+4 digital 4 relays (10A) 4(15-18)(60KHZ) no yes yes
4Transistor(0.3A/PNP
PR-12DC-DA-TN-HMI no DC12-24V 4(0..10V)+4 digital 4(15-18)(60KHZ) Yes(10KHZ) yes yes
)
PR-14 Series CPU Units(Expandable)-built-in RS485 port
Model Expansion Supply voltage Inputs Outputs High-speed count PWM HMI RTC
AC110—~AC240V
PR-14AC-R-HMI yes 10 digital 4 relays (10A) no no yes yes
/DC110-DC240V
6(0...10V)/6digital+4
PR-14DC-DA-R-HMI yes DC12-24V 4 relays (10A) 4(I7-IA)(60KHZ) no yes yes
digital
PR-18 Series CPU Units(Expandable)
Model Expansion Supply voltage Inputs Outputs High-speed count PWM HMI RTC
AC110—~AC240V
PR-18AC-R-HMI yes 12 digital 6 relays (10A) no no yes yes
/DC110-DC240V
6(0...10V)/6digital+6
PR-18DC-DA-R-HMI yes DC12-24V 6 relays (10A) 4(19-IC)(60KHZ) no yes yes
digital
6(0...10V)/6digital+6 4relays (10A)+
PR-18DC-DA-RT-HMI yes DC12-24V 4(19-1C)(60KHZ) yes(10khz) yes yes
digital 2 transistor(0.3A)

11

PR-24 Series CPU Units(Expandable)-built-in RS485 port

High-speed
Model Expansion Supply voltage Inputs Outputs PWM HMI RTC
count
PR-24AC-R-HMI yes AC110~AC240V 16 digital 10 relays (10A) no no yes yes
6(0...10V)/6digital+8
PR-24DC-DA-R-HMI yes DC12-24V 10 relays (10A) 4(19-IC)(60KHZ) no yes yes
digital
2(0/4...20mA)+ 6
PR-24DC-DAI-RTA yes DC12-24V 4(0...10V)/4digital+8 relays(10A)+2Transistor(0.3A/PNP) 4(19-IC)(60KHZ) YES(10khz) yes yes
digital +1(0...10V)/(0...20mA)
Expansion Modules(For PR-18,PR-24 series)
Model Supply voltage Inputs Outputs
PR-E-16AC-R AC110— 8 digital 4 relays (10A) +4 relays(3A)
AC240V
PR-E-16DC-DA-R DC12-24V 4digital+4analog(0..10V)/digital 4 relays (10A) +4 relays(3A)
PR-E-16DC-DA-TN DC12-24V 4digital+4analog(0..10V)/digital 8 transistors(PNP)(0.3A)
PR-E-PT100 DC12-24V 3 Channels PT100, resolution: 0.5°), temperature range : -50°C- 200°C none
PR-E-AQ-VI DC12-24V none 2 Channels (DC 0...10V/0...20mA)
PR-E-Al-| DC12-24V 4 Channels (0/4.....20 mA), Current Signal none
PR-RS485 DC12-24V isolated 485 converter,used to bring out the terminals of RS485 port built-in PR-18&PR-24 series CPU for connection with third
party devices.
Accessories
RS232 Cable RS232 communication module /download cable between PC and xLogic CPU units
USB Cable USB communication module /download cable between PC and xLogic CPU units
PRO-RS485 Converter cable from program port to RS485 port.
ELC-BATTERY RTC BATTERY, the RTC can be backup for 20days in default, but with this battery, the RTC shall be backup for 1 year(only can be applied with PR-18 CPU).

12

2.3 Structure & dimension

1.Standard PR-12 series with LCD model:
7

® 00000000000

(:)_ r="=1

Sk
®

oo —%2 o}

&l

® OO 00 00 00

1.Power supply&Input terminals 2. Program Port(can be used as RS232 port
with ELC-RS232 or RS485 port with PRO-RS485) 3_HMI/LCD panel 4.keypad

5.0utput terminals

2. PR-14 and PR-18 series model:

N Bl 12 /% 0« 18 8 07 18 1 QA A 0C |
g e i o T

(1) ———000000000000000
RIEV/TECH o r___{- { :5
o | g
| (6)
) caoDo —
PR-18ALC-F TPUT dal [

1_Power supply&lnput terminals 2.HMI/LCD panel 3.keypad 4.0utput
terminals 5. Program Port(can be used as RS232 port with ELC-RS232 or
RS485 port with PRO-RS485) 6.Extension port

13

Dimensions of PR-14 and PR-18:

anr LT

9o,

: OR30C0CH0DNDNICACHNN)
’ EH BB B9 BH HH BE

‘ h
7L R
[] @ i _['_'j—_.l_'i
% . -I] 1
8l M= | |8
: d |t S
& = T B
: 0l | R 2EI= =t
=
2 1M 0
g 0l e
= ' [l
901
3. PR-24 series CPU
1) Z 3
l T 1
| 0000000000000000000 —
88]

- C D
= @[}t | -/8°
< = m gl =

® 3)
OO0 OO CO0 B0 B0 00 B0 B0 00 | = |
' | L1 I
: . 133.0 7
= 58

1. Power supply 2.lnput 3. Program/RS232 port 4._.HMI/LCD panel
5.keypad 6.Extension/RS485 port 7.0utput

14

4 _PR-E extension module:

D——=0B0dB3BBEBY
B AC 110~ 2404 INPUT 8xAC
(2
;J RIE%ECH
| ™
r RUN_-'S.’DF‘ r(_ ,/l
| / _F-'R-E-l_ﬁ.-_\C-lR — —@
@ [[RFORIORIR..
[QR0RR0PF0RFELT6)

1. Power supply&lnput terminals 2. Connection cable between CPU and
extension(Detached) 3.Extension port(left) 4. RUN/STOP indicator 5.

Extension port(Right) 6. Output terminals
Dimensions of PR-E:

97,7
6.3
C‘-U —J_li
[| — ‘
I]—L 7 q o] e s/ks il 3l
49 | S
=Rt = = l 212 L2 e 1l
' e I —
21,7
- - S
.-"'__'l.u"l —— —

.
l:h]l.'lL'M']l._"llI"‘ﬂ !
[winlw o {nhe T {mia
il i He o e H [
wl
s
i o
I
-
[=]
l
[E
o

15

3 .Installing/removing xLogic

Dimensions

The xLogic installation dimensions are compliant with DIN 43880.
xLogic can be snap-mounted to 35 mm DIN rails to EN 50022 or on the wall.
xLogic width:

I PR-14,PR-18 Series CPU has a width of 95mm.
I PR-E expansion modules have a width of 72mm.
I PR-24 Series CPU has a width of 133mm.

I PR-12 Series CPU has a width of 72mm
Warning

Z{jEXAIways switch off power before you “remove” and “insert” an

expansion module.

16

3.1 DIN rail mounting

Mounting

How to mount a xLogic module and an expansion module onto a DIN rail:
1. Hook the xLogic Basic module onto the rail.

2. Push down the lower end to snap it on. The mounting interlock at the

rear must engage.

3. Hook the xLogic expansion module onto the rail

4. Slide the module towards the left until it touches the xLogic CPU.
5. Push down the lower end to snap it on. The mounting interlock at the
rear must engage.

6. Remove the plastic cover in the expansion port of CPU and expansion
module.

7. Plus the connector on the flat cable to CPU

A /o

AL R R RSy T

Repeat the expansion module steps to mount further expansion modules.
Note: IT you need install the expansion and CPU on different rows, you need
order the longer flat connection which is used to connected with CPU, the
longest distance can be 200meters between the CPU and the end expansion
module.

Removal

To remove XLogic:

if you have installed only one xLogic Basic:

1.Insert a screwdriver into the eyelet at the bottom of the slide interlock
and move the latch downward.

2. Swing the xLogic Basic off the DIN rail.

17

if you have connected at least one expansion module to xLogic Basic:
1. Remove the connector on the flat cable
2. Slide the expansion module off towards the right.
3. Insert a screwdriver into the eyelet at the bottom of

the slide interlock and lever it downward.

4. Swing the expansion module off the profile rail.
Repeat steps 1 to 4 for all other expansion
modules.

3.2 Wall-mounting

For wall-mounting, first slide the mounting slides on the rear side of
the devices towards the outside. You can now wall-mount xLogic by means
of two mounting slides and two UM4 screws (tightening torque 0.8 to 1.2

Nm) .

—
Mounting slides gl @
k‘ —r e
=
d
L)
© ©

Drilling template for wall-mounting

Before you can wall-mount xLogic, you need to drill holes using the
template shown below.

All dimensions in mm

Bore hole for 0 M4 screw, tightening torque 0.8 to 1.2 Nm

18

1. xLogic CPU

PR-12 Series CPU

-

£'0-/+86

#M4 screws

I

I

I
I"\-I'I

PR-14 and PR-18 series:

le

nx 72+i0.5

1.PR-18 CPU; 2. PR-E extension

19

PR-24 series

103+/0.5

| 124105

S]

Ly
|

nx 7T2+105

v
[~

20

3.3 wiring xLogic
Wire the xLogic by using a screwdriver with a 3-mm blade.
You do not need wire ferrules for the terminals. You can use conductors
with cross-sections of up to the following thicknesses:
1x 2.5 mm2
2 x 1.5 mm2 for each second terminal chamber
Tightening torque: 0.4.. .0.5 N/m or 3. ..4 Ibs/in
Note

Always cover the terminals after you have completed the installation. To
protect xLogic adequately from impermissible contact to live parts, local

standards must be complied with.

3.4 Connecting the power supply

ThePR-12AC,PR-18AC, PR-24AC versions of xLogic are suitable for operation
with rated voltages of 110 V AC and 240 V AC. The PR-12DC,PR-18DC, PR-24DC

versions can be operated with a 12 or 24 VDC power supply.

Note

A power failure may cause an additional edge triggering
signal.

Data of the last uninterrupted cycle are stored in

xLogic

21

To connect xLogic to the power supply:

Wik DC power supple Willhh AC power aupply
L, Lo
M I H I
L W LR T L W n B B
@@ @@ @ D 2000

3.4.1 Connecting xLogic inputs
1._Requirements

the inputs you connect sensor elements such as: momentary switches,
switches, light barriers, daylight control switches etc.

Signal status 0

<40VAC <5VDC
Input current <0.03mA <0.1mA
Signal status 1 | >/9VAC 510VDC
Typical 0.06 Tvoical 0.3mA
Input current 0.24mA yprcal ©.om

AIWO-AIW6(0-10V

Analogue input | NO DC) (PR-6,PR-12)

22

2. Connecting xLogic is shown as in the following
figures:

* DC type digital inputs

b — s e ssesse
y | AR

..--"
]
| -
L

L

e ="

_'-'""F'

e

1+ 4 [o A T Ty

DCi2~z4v IMF

* AC type digital inputs

-

M

o213 14

L

N

A TI0-240Y

* Analog Inputs (DC 0---10V)

W+
‘.U.f.
L+
L+ B A AIZAID A4
DC12~24Y

*Analog inputs current Inputs (0+:+20mA)

23

L+ '

caErenl

L+ M I1 M1 12 M2 13 MY 14 M4

DC 12-~24Y MPUT 4x(004-20)mA

RIEV/TECH PR-E-AL

The above figure shows how to make a four-wire current measurement.

PR-E-PT100

It can be connected with one two-wire or three-wire resistance-type the
rmocouple.

When two-wire technology applied, the terminals “M1+and IC1” (this rule
also shall be applied to” M2+and IC2” , “M3+and IC3”) would be short
connected. Such connection can not compensate error/tolerance caused by
the resistance in measurement loop. The measurement error of 1 Q
impedance of power cord is proportional to +2.5 ° C

The three-wire technology can inhibit the influence of measurement

results caused by cable length (ohmic resistance).

24

L M Mi+ L5 M- Mae I B FEe I3 WS-

L= M Hiv T2 M e Tod 8E M3 TR
B0 12~24Y AT ST LA B 1234 NPT Lo
RiE?/i'ECH PR-E-PT100 R!E?ﬁECH PR-E-PT100
2-wire (short circuit M+ and Ic) 3 wire

3.4.2 Connecting xLogic Outputs

1. Requirement for the relay output

Various loads such as lamp, fluorescent tube, motor, contact, etc., can
be connected to the outputs of xLogic. The maximum ON output current that
can be supplied by xLogic is 10A for the resistance load and 3A for the

inductive load. The connection is in accordance with the following figure:

L [/ L+
29 2% 29 29 29 @@
o Qz
|® Load
N/ M 1

Relay Output

25

2. Requirement for the electronic transistor output:
The load connected to xLogic must have the following
characteristics:
* The maximum switch current cannot exceed 0.3A.
* When the switch 1s ON (Q=1), the maximum current is

0.3A.

1+ u LTRE SR PR =
vl R iR g R ER A 0

S .

Zo e o
] ar ¥ cz L ."
- J 1
ﬂ\'QJ wJ
DT

Teansistor Supud [FHE)
Notes (PNP):
* The load connecting voltage must be <60VDC and it
must be DC.
* The “+” terminal of the output wiring must be
connected with the DC positive voltage, and i1t must
be connected with the “L+” terminal of the xLogic

power , a load must be connected with the -

terminal of the DC negative voltage.

26

PR-E-AQ-VI(DCO. .10V analog output).

OUTPUT ZejtmdV) |

Vi M Vi M

V1.v2:DCO0...10V
R1==5K0

o .

PR-RS485

Actually, PR-RS485 is just a converter with photo isolation bringing out
3 wiring terminals(short circuited inner of such 3 terminals, so only one
channel RS485 bus 1is available) from RS485 port (2x8pin) of
CPU(PR-18/ELC-22/PR-24) for your easy connection with other devices.

[ET
[l

DT 12~24%

RIEV/TECH PR-RSAS

B+ - A+Bl A Bl ATLED

ale)

If “RT1” , RT2” terminal are short connected, one 120R resistor will

be connected between A/+ and B/-

27

3.4.3 Communication port instructions:

PR-14,PR-18 ,PR-24 CPUs

OHA00E lolele)

DC12~24Y a

RIEV/TECH Pro

| Expansion/R5485 port

Program/RS5232 port

L+ M 12 13 I4 I5 I6 [7 18 19 IA IB IC
1
1

PR-18DC-DA-R OUTPUT GxRelay 104

00 B9 09 09 09 o7

RE232
Py port/programming

oo -
2o e

iy
y; 5 N H wpansion/RS485 port

.
= m

C

i&I&i&--&-r&r 'l_;i l';l I:}I- Iél-

1_Programming port/RS232 port (RS232 cable ,USB cable, ELC-MEMORY,
ELC-BATTERY,PRO-RS485) should be inserted in this port.

When the programming port should be used as the standard RS232 port
(D-shape 9 pin header) ,the RS232 cable is needed.Blow s show you the

pin definition of the pin:

28

PIN functi

i ¥ on
~ Wocoon) i

|" C\ oooo ff - | 2 RXD
@ 3 TXD
5 GND

others | NULL

1. Expansion port/RS485 (pin definition)

il I BT

c RS485 A
ST RS485 B

P GND

R— GND

y S—— CANL

o CANH

15-————- +5V

16------ +5V

Communication between CPU and expansion module will use 4.7,9,15 pin.
PR-RS485 module is required when PR-18/PR-24 CPU communicate with the third party

devices via RS485 bus.

29

4.1 Special memory area:

4.Quick reference manual

SMBO
Always_0On SMO.0 Always ON
First_Scan_On SMO. ON for the first scan cycle only
SMB1
Set to 1 by the execution of certain instructions when
Result_0 S y

the operation result = 0

Overflow_I1legal

SM1.

Set to 1 by exec. of certain instructions on overflow
or illegal numeric value.

Neg_Result

SM1.

Set to 1 when a math operation produces a negative
result

Divide_By O

SM1.

Set to 1 when an attempt is made to divide by zero

Table Overflow

SM1.

Set to 1 when the Add to Table instruction attempts
to overfill the table

Table Empty

SM1.

Set to 1 when a LIFO or FIFO instruction attempts to
read from an empty table

Not_BCD

SM1.

Set to 1 when an attempt is made to convert a non-BCD
value to a binary value

Not_Hex

SM1.

Set to 1 when an ASCIIl value cannot be converted to
a valid hexadecimal value

4.2Interrupt Events:

11.2 Rising edge PLC_EVENT_INPUTPO | O Highest priority

11.4 Rising edge PLC_EVENT_INPUTP1 |1 High priority

Timer interrupt O | PLC_EVENT TIMERO 10 | Low priority

Timer interrupt 1 | PLC_EVENT TIMER1 11 | Lowest priority

4.3 High speed counter:

PR-24DC-DA-R/PR-24DC-DAI-RTA

11.0 HCO
11.1 HC1
11.2 HC2
11.3 HC3

Each high speed counter occupies an input point for receiving the pulse.No

reset, adjust the direction, start and other functions.The high speed

counter can only be used for recording number in the PLC.The number of

30

high speed counters of different PLC are different.PR-24DC-DA-R PLC and
PR-24DC-DAI-RTA PLC have four high speed counters.The input points of high
speed counters are 11.0,11.1,11.2 and 11.3. HCO,HC1,HC2,HC4 are used for

storing the values of high speed counters.

31

X Ladder direction for use
5.The detailed annotation of operation interface

5.1The main menu

File Edit Wiew PLC Debug Help

5.1.1 File
£ | New Cirl 40
| @ Open... Cirl+0
Open PMW File. ., Ctrl+P
|Gl save Ctrl+s
Save As...
Save Binary...
A | Upload... Cirl+U
X | Download... Cirl+D

Exit
New: New command is used to create a new project, you can use the shortcut
CTRL + N to create a new project.
Open: Open an existing project, VCW format files, which can be opened by the shortcut
CTRL + O. Opening the PWM is the PWM format file, you can use the shortcut CTRL +
P to open.
Save: Save the current edit program, you can use the shortcut CTRL + S
to save.
Save as: You can save the project and you can save the project with other
names which have been saved.
Save as binary: Save the project in a binary format.
Upload:Read the program from the PLC,ensure that communication 1is
normal .Program is read to a new project, can be saved and named.You can
use the shortcut CTRL + U to read.
Download: Write program to the PLC,Compiler success and then click the
download or use the shortcut CTRL + D to download the program.

Exit:Close the X Ladder software.

32

5.1.2 Edit

¥ Undo Crl+zZ
& | cut Cirl+%
Copy Cirl4C
2 Paste Ctrl+v

Select all Ctrl+4

Find And Replace Ctrl+F

Undo: Returns to the last operation,you can send multiple “undo”

command. If you send out "open™ and "off" or "save" or "compile" command,
"undo" buffer is cleared.Your next action is recorded as the beginning
of a new "undo" order.Can use the shortcut CTRL + Z to undo operation.
Redo:Contrary to the function of the undo.

Cut: Select an object, cut it, and place it in the WINDOWS clipboard
buffer.

Copy: Select the object, copy the operation, and the copy of the object
is placed in the WINDOWS clipboard buffer.

Paste: Stick the cut or copied object in the selected area.

Select all: Select all the text of the current cursor position, you can
use the shortcut key CTRL+A.

Find and replace: Is used to perform the "find", "replace™ and "go"
operation on the program, local variable table, data block, symbol table

or state table, and can use the shortcut key CTRL+F.

5.1.3 View

STL
v || LAD

Component [4
| 43} Symbolic Addressing

Toolbars 3

Frame 3

STL: Display the program to STL instruction.

33

LAD: Display the program to LAD instruction.

Component: Components include data blocks, system blocks, program editing,
function symbols, variable symbols, cross reference and communication
settings, will be detailed description of the function of the module in
the instruction tree.

Symbolic addressing: After the start symbol editing function, i1t will

display the symbol of the annotation.

4 / Frogram Editc:r//] Variable Symbol < |

Symbol Adress Data Type Comment
¥ | Start MO.0 BOOL
¥ | Stop MD.2 BOOL
| Motor MO, 3 BOOL
BOOL
MO.0 (Start] M0O.2 (Stop) MO, 3 (Motor]
| | | I | s
| [| [LS

Toolbar:The toolbar of the contents are as follows

v || standard
v | Debug
v | Instruction
v

Instruction (FxMode)
You can choose to use the tools, the default is full.
Floating window: Window that can be moved in the operating interface. Its
contents are as follows:

Status Chart

Project Manager

v
v
v || Information Qutput
v

Debug Information

Status table, project management, information output and debugging

information window can be moved.

34

5.1.4PLC

@ Compile
H Compile Al

Clear...

Type..

MODBUS Address Query...
RUN:Make RUN in PLC mode, running the program in PLC, if you use the software to
open RUN mode, you need to ensure the normal communication between software and PLC.
Stop: Make STOP in PLC mode, to stop the program in the PLC. If you use the software
to make STOP into the PLC mode, you need to ensure the normal communication between
software and PLC.
Compile:Compile the program of the current page.
Compile all:Compile all project components (program block, data block and system
block).
Clear: Clear all the data in the PLC, only offline can clear the data from the PLC.
Information: The information view of PLC, we can only see in the connection state.
Read PLC date/time:In the connection mode, read the PLC internal date time.
Write PC time to PLC: In the connection mode, the PC time is written to the PLC.
Type: Can choose the type of PLC.

MODBUS address query: The corresponding MODBUS address of the variable.

35

5.1.5 Debug

ﬁ Disconnect

Connect: Display PLC data status in the program editor window.

Disconnect: No longer monitor the current value of the PLC data. In offline
state does not represent the state of STOP in PLC, if you want to make
STOP in PLC state, you can modify the state of PLC in the connection state,

in offline state can not be modified.
5.1.6 Help

About...

Select Language b

Call Help File...

About: the information of the software.

Choose Language:Can choose Chinese or English

Call help file: Can call help file.

36

5.2 toolbar

O < BB e MM AT & [Tl | —AF-2 O (AF S At 4 - {3 — | =

5.2.1 New: New command is used to create a new project, you can use the
shortcut CTRL + N to create a new project.

5.2.2 Open: Open an existing project, VCW format files, which can be opened by
the shortcut CTRL + 0. Opening the PWM is the PWM format file, can use the shortcut
CTRL + P to open.

5.2.3 Save: Save the current edit program, you can use the shortcut CTRL
+ S to save.

5.2.4 Undo: Returns to the last operation,you can send multiple “undo”
command. I'f you send out "open'™ and "off" or "save" or "compile™ command,
"undo" buffer s cleared.Your next action iIs recorded as the beginning
of a new "undo™ order.Can use the shortcut CTRL + Z to undo operation.
5.2.5 Redo:Contrary to the function of the undo.

5.2.6 Cut:Select an object, cut it, and place it in the WINDOWS clipboard
buffer.

5.2.7 Copy:Select the object, copy the operation, and the copy of the
object is placed in the WINDOWS clipboard buffer.

5.2.8 Paste: Stick the cut or copied object in the selected area.
5.2.9 Symbolic addressing: After the start symbol editing function, it
will display the symbol of the annotation.

5.2.10 Compile:Compile the program of the current page.

5.2.11 Compile all:Compile all project components (program block, data
block and system block).

5.2.12upload:Read the program from the PLC,ensure that communication is
normal .Program is read to a new project, can be saved and named.You can
use the shortcut CTRL + U to read.

5.2.13 Download:Write program to the PLC,Compiler success and then click

the download or use the shortcut CTRL + D to download the program.

37

5.2.14 Connect: Display PLC data status in the program editor window.
5.2.15 Disconnect: No longer monitor the current value of the PLC data.
In offline state does not represent the state of STOP in PLC, if you want
to make STOP in PLC state, you can modify the state of PLC in the connection
state, in offline state can not be modified.

5.2.16 Run:Run instructions in the main menu.

5.2.17 Stop:Stop instructions in the main menu

5.2.18 Erase:Select the instruction that has been written, click erase,
delete instruction.

5.2.19 Choose: When the selection is lit, it indicates that the current
location area can be selected, copied, cut and pasted. Selection is gray,
the current location of the selected operation can not be carried out.
5.2.20 Normally open contacts:Click to select the normally open contact,
in the program editing area will appear normally open contact which is
undefined, you can click the mark to enter the address.

5.2.21 Normally closed contacts:Click to select the normally closed
contact, in the program editing area will appear normally closed contact
which is undefined, you can click the mark to enter the address.
5.2.22 Rising edge contact:Click to select the rising edge of the contact,
enable input will lead to a scan cycle .

5.2.23 Falling edge contact:Click to select the falling edge contact ,
when the enable input i1s disconnected, 1t will lead to a scan cycle.
5.2.24 Output coil: The output coil must be at the end of each line._Write
the new value of the output bit to the output image register.

5.2.25 Function block: Click the function block, the interface is as

follows.

38

r]nput istruction l = |ﬂh_r
1} || Keep this dialog box
[K J | Referece | | Cancel | [Help
b =

Enter the required function block instruction in the dialog box, letters
are capital.
5.2.26 Level :The instruction and function blocks are connected in series.
5.2.27 Vertical line:The instruction and function blocks are connected
in parallel.
5.2.28 Take back:When the enable input, the output is 0, when the enable

to disconnect, the output is 1.

39

5.3 Instruction tree

Project Manager R
=-H8 Project [PR-24DC-DA-R]
=&, Data Block

------ & DAT_0 (DATO)

------ B DAT_1(DATY)
—-48% System Block
(=4 Program Block

----- O MAIN (INTO)
----- O INT_1(INT1)
----- ¥ SBR_O (SBRO)
----- Function Symbal
= Variable Symbol
----- USR_0 (USRO)
----- USR_1 (USR1)

-3 Status Chart
{0 CHT_0 {CHT)
{3 CHT_1 (CHT1)
----- . & Cross Reference
----- Communication
I';'I--{:| Instructions

-1 Bit Logic

-3 Clock

-] Communications

-] Compare

{:I Convert

-] Counters

{:l Floating-Point Math

- Integer Math

{:l Interrupt

-1 Logical Operations

l:l Move

-2 Program Control

&-{13 shift/Rotate

#-{23 String

-] Table

{:l Timers

-2 Pulse Train Qutput (PTO)

(-2 UART Driver

-1 Free-Port (UART)

-2 Modbus (UART)

-] CAN Driver

-2 Free-Port (CAN)

-3 LD

-] Subroutine

*

40

5.3.1 Project
rPLCType T

Select The PLC Type: |PR-24DC-DA-R V]

Ttem Value
Rtentive Range 300Byte
FLASH 54K

Rievtech Micro PLC

PLC Mame
R,EVﬁECH PLC Information PR-24DC-DA-R

4| 1] | F

Memory: <" MODBUS 1x (0 ~ 31) -

BOOL 10.0 ~[31.7 =i
BYTE IB0 ~IB31

WORD WO ~ W30

DWORD IDO ~ ID23 *

Instruction Set: |p A O LDN AN ON i
LDT AT OI LDNI ANI QNI |
NOT EUED ALD OLD LPS
LDSLRDLPP = =I5
SI R RI AEMC MOP TODR
TODW GPA SPA LDE= AB= OB= -

| ok || cancel |

You can choose the type of PLC,When PLC type is determined, the PLC parameter will
appear below.

5.3.2 Data block

=&, Data Block
- B part_o (pato)
@ DAT_1(DAT1)

Data blocks contain DAT-0 and DAT-1, you can right-click to insert new data blocks
for programmers to use .The contents of the data block are as follows:

Adress Data Type Value Comment

BOOL
BOOL
BOOL
BOOL

In the data block, you can set the address, data type, datavalue, and annotation .The
contents of the data blocks are written to PLC after a permanent save, unless a new
program is written in PLC.The content in the block of data is written to the PLC

and it will be permanently preserved, unless a new program is written in PLC.

41

5.3.3 System block
System Blodk

Double click the system block, pop the following interface:

System Block ||
| Retentive Ranges | Interrupt Time | Force Table
RS232/R5485 | RS232/RS485 CAN | Password
Defaults
Part 0 Port 1

1

Protocol: IModbus - I [Mudbus

]

Station number: 1 1 {range 0... 255)

Baud rate: Igﬁuu bps v] [gﬁuu bps v]

Data bits: [s (RTU) v] [s (RTWY) v]

Parity: | NONE - | [none -

Stopbits: | 18t v| 18t -
Response timeout (100ms) 10 10 {range 1... 255)
Interval frame delay (B) 10 10 {range 1... 253)

Configuration parameters must be downloaded before they take effect

[Ok _] | Cancel |

RS232 / RS485 interface: All ports are using MODBUS communication
protocol.You can set four ports, They are : port 0, port 1, port 2 and
port 3.

You can set the station number, baud rate, data bit, stop bit, parity,

timeout and frame interval time.

42

CAN interface

System Block ||
Retentive Ranges | Interrupt Time I Force Table
RS232/RS485 | Rs232Rs485 | CAN | Password

Port 0 Port 1
Bit rate: | 500,000 bps ~| | 500,000 bps -
Station number: 1 1
RxMsgID: 22 22
TxMsgID: 21 71
Reset imeout: 500 SO0 {10 - 1000ms)

Configuration parameters must be downloaded before they take effect

Lok J[Cancel |

PLC supports CAN communication.CAN communication will be introduced in the

communication block.

43

Password interface

System Block ||
Retentive Ranges I Interrupt Time I Force Table |
R5232/R5485 | RS232Rs485 CAN | Password

Defaults |

Privileges

@ Level 1 -Full
(7 Level 2 - Mininum
1 Level 3 - Disallow Upload

Password

Verify

Full Privileges: all PLC functions are available without restriction,

Configuration parameters must be downloaded before they take effect

Ok] | Caneel

Password has 3 levels.

Level 1-Full:All PLC functions are available without restriction.
Level 2-Minium: You have to enter a password before using each function
of PLC.

Level 3-Disallow Upload: You can®t upload the PLC program.Then you have
to enter a password before using each function of PLC.

And 1f you forget the password:

1.Power off PLC

2.Keep pressing the UP key and ESC key, then power up to PLC.

3. When “Are you sure turn to FBD” appears,you press the OK key.

4 .Repeat these steps,you turn the PLC to Ladder diagram.PLC program is
empty.You can download a new program.

The length of the password is 1 to 16 bits.

44

Retentive Ranges interface

System Block ||
| RS232/RS485 | Rs232Rs4ss CAN | Password
Retentive Ranges | Interrupt Time I Faorce Table

Defaults

Data Area Offset Mumber of Elements
Range 0 0 256
Range 1 0 0
Range 2 0 32 @
Range 3 ! 32 E
Range 4 0 16 @
Range 5 14 18 |£|

Clear Memory [¥] Clear EEPR.OM

Configuration parameters must be downloaded before they take effect

[Ok] | Cancel |

By default, all M, T, V, and C storage areas are set to remain.You can
redefine the scope and set some storage areas to non - hold.You can define
the six holding range, select the storage area you want to keep.You can
define the address holding range in the following storage areas. As the
following: V, M, C, and T. For timers, only the memory timer (TONR) can
be kept, and only the current value of the timer and the counter can be
kept. Timer and counter bits are cleared .

All the variables in the retentive ranges are saved permanently.PLC can

hold up to 800 bytes.

45

Interrupt time parameter setting interface:

System Block ||
RS232/R5485 | R5232/R5485 | CAN | Password
Retentive Ranges | Interrupt Time | Farce Table

Time Interrupt 0 {1ms) 200] {Range 1... 255)

Time Interrupt 1 (1ms) 200 (Range 1... 255)

Configuration parameters must be downloaded before they take effect

[Ok _] | Cancel |

There are two time interrupt events.respectively, the time of the
interrupt event 1 and the time of the interrupt event 0. The interrupt

time you can set i1s 1 to 255 milliseconds.

46

Force table interface:

System Block X]
RS232/R5485 | R5232/R5485 | CAN | Password |
Retentive Ranges | Interrupt Time | Force Table
Defaults
Discrete Cutput Discrete Output
g ¥ 2 5349 5 67 @i & G &R
oo.x ¥ @ @ @ & (@ @& o4x @ @6 @ E @ E E
Ol [@ @ (W 66 65 5.« (W W 6 [[[
ozx 1 @ [(E 6w EE o (W W (mE [E (= ([
03.x [1 [(E @ (6 @ E 7. (W [(mE [e [(=
Configuration parameters must be downloaded before they take effect
[ok J[cancel |

When PLC is converted from RUN mode to STOP mode, the selected output

points will be 1.

47

5.3.4 Program block

=4 Program Block

- {0 MAIN (INTO)
40 INT_1(INT1)
...{F SBR_O (SBRO)

The program block contains three parts, namely, MAIN (main program), INT-1
(interrupt routine) and SBR-0 (subroutine). Check the interrupt program,
right click to add or delete interrupt program. Check the subroutine,
right click to add or delete subroutine. The main program can not be added

or deleted.

5.3.5 Function symbol

----- Function Symbol

Double click the function symbol, the pop-up interface is as follows:

Symbol Adress Comment
¥ | MAIM INTO
[INT_1 INT1
V¥ | SBR_O SBRO

You can modify the symbols, addresses, and comments.

Symbol Adress Comment
V| o INTO zhu cheng xu
V| zdox INT1 zhong duan cheng xu
V| Zox SBRO i cheng xu

5.3.6 Variable symbol

EI Variable Symbal
g USR_0 (USRO)
e USR_L(USRY)

Double click the variable symbol, the pop-up interface is as follows:

Symbol Adress Data Type Comment

BOOL
BOOL
BOOL
BOOCL

Symbol, address, data type, and comment can be set in variable symbol.

48

Symbol Adress Data Type Comment

v | start 10.0 BOOL qi dong
v | stop 0.1 BOOL ji ting
alarm Q0.0 BYTE bao jing
BOOL

When the address and data types do not match, the address is red.

5.3.7 Status chart

EI{EI Status Chart
. L. cHT_0 (CHTO)

Double click the status chart, the pop-up interface is as follows:

Status Chart
Address Data Type Value Forced Address Data Type Value Forced
14 b n]| CHT 0 (CHTO) ¢ CHIT 1 (CHTY)

Status Chart Information Output Debug Information

In the status chart, you can set the address, data type, value, and forced.

5.3.8 Cross reference

- 5 Cross Reference

The cross reference displays the address, symbol, location, and context ,

the interface is as follows:

4 Program Editor r Function Symbol r Variable Symhayy Cross Reference x]
Address Symbol Location Context
Q0.0 zox (SBRO) METWORK O Col 1 Row 0)
Q0.1 zox (SBRO) METWORK O Col 1 Row 1)
MO.0 zox (SBRO) METWORK O Col 0 Row 0 -1 1-

Using cross reference does not require compilation.

49

5.3.9 Communication

------ Communication

Set the PLC communication, the setting interface is as follows:

Communication X

Serial Port | Modbus TCP/IP | CAN Kvaser | CANpro | CANalyst-II |

Station: [n v]
Port: |USB-SERIAL CH340 (COM1) v
Bus Parameters
Baud Rate: 9500 bps -
Parity: |NONE -
Stop Bit: |18t -

[ok || cancel |

Serial Port: You can set the station number, port, baud rate, parity and
stop bit.

MODBUS: PLC doesn’ t support the MODBUS TCP/IP function temporarily .
CAN KVASER . CANPRO. CANALSYT -11 are three kinds of CAN drivers, you can

choose the corresponding CAN driver to use.

Communication w

| Serial Part | Modbus TCP/IP | CAN Kvaser | CaNpro | CANalyst-I |

Default
CAM Channel: [%
[T Exclusive [T Mo Init Access
Bus Parameters
Bus Speed: [EUU,UUD bps "]
Sample Point: 50 %h
s |1 '
CAM Envelope: Rx 21 Tx 22

[ok || cancel

50

5.3.10 Instructions

EI{:I Instructions
&-{Z] Bit Logic
{27 Clock
{:l Communications
{:I Compare
{:I Convert
{:I Counters
{:l Floating-Point Math
l:l Integer Math
l:l Interrupt
l:l Logical Operations
l:l Maowve
D Program Control
(2] shift/Rotate
&-{Z] String
D Table
D Timers
D Pulse Train Output (PTQ)
-3 UART Driver
D Free-Port (JART)
{23 Modbus (JART)
{2 CAN Driver
{23 Free-Port (CAN)
&-{] LD
l:l Subroutine

Instructions will be explained in detail in the instructions section.

51

5.3.11 The program editor

4 Program Editor x]
Symbol Var Type Data Type Comment
TEMP BOOL
TEMP BOOL
TEMP BOOL
TEMP BOOL
METWORK O
M0.0 Q0.0
| ()
0o.1
METWORK 1
MO.1 Vo.0
| (s)
10
METWORK 2
44 b k]| MAIN gNTO),INT_1 (INT1) /SBR_O (SBRO)

Local variable table: 1t will be described in detail in the PLC X Ladder

storage area and variable.
Program editing area:In the program editing area, the main program.

interrupt program and subroutine can be edited.

52

5.3.12 Status chart, information output

Information Cutput x

5Y5_2 (5Y52) =
5YS_3 (5YS3)
5YS_4 (57549
5YS_5 (SY55)
SYS_6 (SYSE)
5Y5_7 (SY57) :
SYS_8 (5Y58)
5YS_9 (SY59)
Size of System Block : 150 Byte(s) (53.6/
Compiling Program Block ... !
MAIN (INTO) i

m

INT_1(INT1)

SBR_0 (SBRO) ,
Size of Program Block @ 0 + 96 Byte(s) ([
Total O Error(s) =

-

Status Chart | Information Output

Status Chart: 5.3.7 chapter.
Information Output:The output information window keeps a list of errors
generated during compilation.When program modification is completed,

compile the program again.

53

5.4 Programming concepts

5.4.1 How the program works

The program is run by the loop, PLC reads and writes data continuously.When you
download the program to PLC and make PLC in the run mode, the PLC' s central
processing unit (CPU) executes the program in the following order:

A:PLC read input status.

B:The PLC program uses input values for logic control.

C:When the program is running and writes the results to the output image register.
D:At the end of the program, the output value of the output image register.

E: repeat the above steps.

PLC performs a series of tasks repeatedly. The cycle execution task is called the scan
cycle.PLC performs most or all of the following tasks during the scan cycle:

A: PLC read input status.

B:PLC executes the program's instructions, and stores the data in different memory
areas.

C: performs all communication requests.

D:PLC performs CPU self test diagnostic program.PLC ensure that the hardware,
program memory and all expansion modules are normal operation.

E:The values stored in the output image register are written to the actual output.
Attention: the execution of the scan cycle depends on the PLC that is set in the STOP
(stop) mode or the RUN (run) mode. In the RUN (run) mode, the program is executed;

in the STOP (stop) mode, the program is not executed.
5.4.2 Addressing overview

Identifying absolute and symbolic address

You can use absolute or symbol to identify the instructions in the program.Absolute
reference use memory area and bit or byte location to identify the address.symbolic
reference uses letters, numbers, and characters to identify addresses or values.
How to display the address of the program editor:

10.0 The absolute address is made up of the memory area and the number

54

of addresses.

#INPUT1 # symbols in a local variable before

INPUT1 Global symbol name

2?.2 0r 72?2 A question mark indicates an undefined address (which must be
defined before the program is compiled).

Global scope and local scope

The symbol value in the symbol table has a global scope, and the symbol value in the
local variable table has a local scope.

Global symbol

Global symbols can be used in the X Ladder program editor.

In the X Ladder program, you can use the global variable table to assign the global
symbol.

local variable

Local variables can be used in the X Ladder program editor.

Local variables are assigned in the local variable table of the respective POU, and the
scope is limited to the POU of the local variable. Each POU has a separate local
variable table.

Attention: if you use the same address name in the local and global variables table,
local variables are preferred.

Local variables use temporary L memory, and do not require the PLC program
memory space. The subroutines that use only the local variable parameters (or don't
use the parameters) are mobile subroutines, They can be used in more than one
program.If you want to use a parameter in a plurality of POU ,It is best to define it as
a global symbol in the global variable table, and do not define it as a local variable, or
you must assign each POU 's local variable table separately.Because local variables
use temporary memory, every time POU is called, be sure to initialize local variables
in POU.Global symbol table supports global symbol constant. Local variable table

does not support symbolic constants.

55

5.4.3 How to organize the program

Basic elements of a control program

CPU PR-X control program consists of the following program types:

main program The main body of the program is where you place the control
application instructions.The instructions in the main program are executed in
sequence, and each scan cycle is executed once.

subroutine Subroutine stored in a separate block, when the main program,
interrupt routine or another subroutine call subroutine, the subroutine will be
executed.

interrupt routine The interrupt routine is stored in a separate block, which is
executed only when the interrupt event occurs.

How to terminate POU

The compiler uses unconditional END, MEND, RET, or RETI to terminate each POU.If
you put the unconditional END, MEND, RET, or RETI into the program, the compiler
will return an error message.

subroutine

Subroutine is particularly useful when you want to perform a function repeatedly;
You just need to write a logic in the subroutine, then you can call the subroutine
every time when you need it in the main program.

Advantages:

1. Your program size becomes smaller.

2.Because you remove the code from the main program, the scan time will be
reduced.

Subroutine can be scanned only when it is called.The main program is constantly
scanned.

3.Subroutine is easy to be moved; You can select a function and copy it to another
program.You don't need or need a little repetitive operation.

Attention: V. memory usage limits the portability of the subroutine.Because a
program's V. memory address assignment may be in conflict with the assignment in
another program.Instead, the subroutine which only use local variables is easy to

56

move,because there is no need to worry about addressing conflicts.

interrupt routine

You can write an interrupt routine to handle some predefined interrupt events:The
interrupt routine is not called by the main program;When the interrupt event occurs,
it is called by the PLC operating system.Interrupt routine is best to use local variables.
You can use a local variable table to ensure that your interrupt routine uses only
temporary memory.

5.5 How to enter the ladder logic program

5.5.1 How to build a new project

Click] , Or click on the file drop-down menu] Icon, Create a new project.
Open an existing project

Click the “file” icon, select “open” or “open the PWM file”.

5.5.2 Ladder logic element and its working principle

Ladder logic (LAD) is a graphical language which is similar to the electrical relay
diagram.When you write a program in LAD, you use graphical components and
arrange them into a logical network.The following component types are available for

use when you build a program:

contact 1" the switch which power supply can pass through.When the normally
open contact logic is 1 and the normally closed contact logic is 0, the power supply

can pass through these contacts.

coil 2| The coil represents the output.

Block 3 Each block represents a function.

The network is composed of the above elements.The power supply from the left side

of the power rod flows through the closed contact to charge the coil or the block.

57

5.5.3 Network rules for series and parallel in LAD

Rules for placing contacts

Each network must begin with a contact.

The network cannot be terminated by contact.

Rules for placing coils

The network can not start with the coil; The coil is used to terminate the logical
network.A network may have a number of coils, and the coils are located on a
parallel branch of the network.Could not be connected in series with more than one
coil in the network

Rules for placing blocks

If the block has ENO, the enable bit can be extended to the out of block;This means
that you can place more instructions behind the block.In the network, you can
connect in series with a number of boxes with ENO.If there is no ENO in the box, no
instruction can be placed on the following.

Network size limit

Cell is the area which is placed instruction.In the network, a single network can

extend 32 cells Vertically or 32 cells horizontally.

5.5.4 How to input commands in LAD

Line

You can use horizontal and vertical lines to connect elements to finish the network.
b At - {3 — |

Double click the instruction tree

1.Place the cursor in the position you want to edit in the program editor

window.Click the mouse, there will be a selection box.

METWOREK 2

2.Select the required instruction, double click it.

58

Instruction will appear in the selected editing area.

METWORK 2

Use the toolbar button or function key
1.Place the cursor in the position you want to edit in the program editor window.

Click the mouse, there will be a selection box.

METWOREK 3

1.Select the required button in the toolbar
b 4 At O {3 — |
Or use the functional keys (F4= contacts, F6= coil, F9= box).

2.The second step is over, there will be a drop-down list.Find the needed instructions

in the list.Double click the instruction or use the ENTER key to enter the instruction.

-

B 4 o A TR 4 T
Mo m

i
=
m

59

5.5.5 How to enter the address in LAD

When you enter a command in the LAD, the instruction contains question marks.The
guestion mark indicates that the parameter is not assigned.You can assign values to
the parameters of the element when you enter the element.If the parameter is not
assigned, the program will not be properly compiled.

To specify a symbolic address, you must perform the following simple steps:
1.Enter a symbol or variable name in the address area of the instruction.

2. ifitis a global symbol, the symbol table / global variable table is used for
Specifying a symbol name to the memory address.

Attention:you can use local variable table at the top of the program editor
window.Input symbol name in the "symbol" column.Because the compiler will
automatically specify the L memory address, you do not have to enter the address
for the local variable. You can drag the edge of the table to minimize the size of the

local variable table.
5.5.6 How to edit program elements in LAD

Cut, copy, paste, or delete multiple networks

By dragging the mouse or holding down the shift key with the mouse to select the
adjacent networks, you can choose a number of adjacent networks for cutting,
copying, pasting or deleting options.

First of all ,you should select a project, and then you can use the copy function.The
contents of the copy are placed in the Windows clipboard buffer.

You can choose the following objectives in the project:

1. Program text or data domain

2.Instructions in the LAD, FBD, and STL editors

3. Single network

4. Multiple adjacent networks

5. All networks

6.Symbol table, row and column of the symbol table

7.State table, row and column of the state table

60

Edit cells, instructions, addresses, and networks

1.Select an empty cell, you can use the right key to select the operations as follows:

Undo Ctrl+Z
Redo Ctri+Y
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Select all Ctrl+A
Find And Replace Ctrl+F
Insert b
Delete 3
Place Element]
foom F

2.Select an instruction, you can use the right key to select the operations as follows:

Q0.0
r
Undo Cirl+Z
Redo Ctrl+¥
MNETWORK
Cut Chrl+X
Copy Ctrl+C
Paste Ctrl+WV
Select All Crl+A
NETWORK Find And Replace Ctrl+F
Insert 3
Delete k
Place Element 3
METWORE
Loom k

61

3.You can cut and paste elements and rows, delete rows or columns.

Delete element:

10.0 Q0.0
| —F—{)
Undo Ctrl+2 I
Redo Ctrl+Y
Cut Cirl+X
f 1
NERVACHEE Copy Ctrl+C
Paste Ctrl+V
Select All Ctrl+A
Find And Replace Ctrl+F
METWORE 2 Treeet b
Delete r Row
Place Element 3 £
Zoom i MNetwork
MNETWORK = Interrupt
Subroutine

You can use the DELETE or BACKSPACE key to delete the cells; You can select the
elements that need to be deleted, use the right key to select the “delete” function
component.

Attention: in order to select the vertical line that needs to be deleted, you should use
the cursor to select the vertical line.

i
S

MO.0

MO.1

62

5.5.7 How to use find / replace

1.Select Edit > Find , Edit > replace
2. Use the shortcut key CTRL+F to start the search function.

fFind And Replace l =1 |_ihr
Find What:
Replace Width:
(1 Find Up @ Find Down

Status Location

[Mext] | Replace I lRepIace All

LS

How to use search and replace function

Search function

1.Enter the string you want to search in the “search content” field.

2.You can use the “Find up” and “Find down” functions.

Replacement function

1.Enter the string you want to search in the “search content” field.

2.Enter the string you want to replace in the “replacement content” field.

3.To find the next string, click the “Next” button.

4.If you want to replace the string, click "replace™ .If you want to replace all of the
characters, click “Replace All”.

Where to use

You can use the "find" and "replace™ in the program editor window.

How them works

1.The "find" function allows you to search strings, such as the operation of network
number, title or instruction mnemonic. ("Find" function does not search network
comments, It just search the network title.)

2."Replace" function allows you to replace the specified string.

63

5.5.8 How to display errors in LAD in the program editor

Red words display errors.
Attention: when you replace the invalid value or symbol with a valid value, the font is

automatically changed to the default font color.
5.5.9 How to compile in LAD

You can use the toolbar button or the “PLC” menu to compile.

FLC | Debug Help

@ Compile
[¥ Compile Al

Clear...

Type...
MODBLUS Address Query...

"Compile" M Allows you to compile a single element of the project.When you select

"compile”, the current window is compiled and the other windows are not compiled.

I

"All compile" =" Compiles the program editor, system block, and data block.When
you use the "All compile” command, all windows are compiled.

Use the output window to resolve the error

When you compile a program, the output window lists all the errors about the

program.Errors include location (network, row and column)and error types.

64

5.5.10 How to save the project

You can use the "save" button on the toolbar to save your project, or use the

shortcut key CTRL+S to save your project.
Gl save Ctrl+s
Save As...
"Save" allows you to save all changes quickly in your project.
“Save as” allows you to change the name of the current project and the location of

the directory .

5.6 How to set up a communication and download program

5.6.1 Communication settings

How to build a communication between the personal computer and the PLC in the
Xladder. It depends on the hardware that you installed.Use the communication cable
to connect PLC and the computer, set up the correct communication parametersin
the Xladder and then PLC and computer can communicate.

You can set up the communication or edit the communication settings at any time.
Steps to establish a communication:

1. Use the communication cable to connect PLC and the computer.

Default parameters:

Station Number:0

Port:Select the correct port

Baud rate:9600 bps

Check:EVEN

Stop bit: 1 bit

65

Communication u

Serial Port | Modbus TCP/IP | CAN Kvaser | CANpro | CANalyst-I |

Station: [U v]
Port: | UUSB-SERIAL CH340 (COM1) -
Bus Parameters
Baud Rate: 9800 bps -
Parity: [NDNE v]
Stop Bit: [1Bit -

ok J[cancel |

2.Select the PLC model: ensure that the PLC model in the software is consistent with

the actual PLC model.

PLC Type

Select The PLC Type: |

PR-12DC-DA-R
PR-14AC-R
PR-14DC-DA-R
PR-18AC-R
PR-13DC-DA-R
RIEV/TECH bt
PR-24AC-R
PR-24DCDA-R
PR-24DC-DAI-RTA

' T P

Memary: -'I' MDDBUS.D((0~ 31) -

BOOL 10.0 ~131.7

BYTE IB0 ~IB31

WORD W0 ~ I'W30

DWORD IDO ~ ID28 -

Instruction Set: | p A O LDM AM OM o
LDT AT OI LDMI AMI OMI |:|
MOT EU ED ALD OLD LPS
LDSLROLPP = =I5
SI R RI AEMO MOP TODR.
TODW GPA SPA LDE= AB= CB= -

| ok || cancel

66

3.In this PLC, you can choose 5 kinds of communication.Right click to open the

“communication”, the interface is as follows:

Communication

X

Serial Port | Modbus TCP/IP | CAN Kvaser | CANpro | CANalyst-I |

3

Station: [U

Port: | USB-SERIAL CH340 (COM1)

Bus Parameters
]

Baud Rate: |9800 bps
v

)

Parity: | NONE

StopEit: | 1Bt

J |

[ok

Cancel

5.6.2 Download program

If XLadder and PLC communicate successfully,you can download the program to

PLC.Steps are as follows:

Attention: the new program will cover the old program.

1.Before the program is downloaded to PLC, the program needs to be

compiled EQIs

2.After the success of the compiler, click the "download" = button in the toolbar,

or select File > download.

The interface is as follows:

xladder

(=] - s

PLC is running, stop it?

Mo]

J |

[Yes

e

Click Yes, the software will automatically download the program block, the data block

and the CPU configurations to the PLC.

67

3.When the program is downloaded successfully, the interface is as follows:
r»cl.avc:h:ler l = i |-?3-I1

Run the PLC, Initialize all the PLC variable? a
[fES] Run PLC and initialize PLC variable
o [MO] Run PLC without initialize PLC variable
[Cancel] Don't run PLC

[Yes] l Mo] l Cancel]

L

There are three options,you can chose one of them.

5.When you choose “yes” or “no”, you can click on the “connection” Ilmlto monitor

the program. When you choose “cancel”, PLC is stopped.You can click on the “run”

button © , then click on the ”connection"Ilml to monitor the program.
6.If the type of PLC set in the software is not consistent with the PLC type of the

actual connection,the software will display a warning message.
xLadder l = i |iz-l

I@-I PLC Type Error -
L 7

Ok

7.You can double click on the project of the project manager to modify the PLC

model.

Project Manager o x
-5, Project [PR-24ACH]

8.Click the “download” button to download the program again.
9.If the program downloads successfully, you can convert the PLC from the STOP

mode to the RUN mode to run the program.

5.6.3 How to correct compilation errors and download errors

The output window automatically displays program information and error messages
at any time when you compile a program or download a program.

The information usually includes the error of the network, the column and row

position and the error code and instructions.

68

Information Output

DAT_1{DAT1)
Size of Data Blodk @ 0 Byte(s) (0.0%)
Compiling System Block ...

SYS_0 (5Y50)

5YS_1 (5Y51)

5Ys_2 (5Y52)

5Y5_3 (5Y53)

5YS_4 (5Y54)

5YS_5 (5Y55)

5YS_6 (5YSE)

5YS_7 (5Ys57)

5Y5_8 (5Y58)

5YS_Q (5Y59)
Size of System Block : 150 Byte(s) {53.6%6)
Compiling Program Blodk ...

MAIM (INTO)

INT_1(INT1)

SBR_0 {SBRO)
Size of Program Blodk : 0 + 120 Byte(s) (0.0%: + 0.4%:)
Total 0 Error(s)

Status Chart Information Output | Debug Information

If you have closed the output window, select View > floating window > output

window from the menu bar to display the output window again.
5.7 How to monitor and debug the program

After the program is downloaded, you can use the "debug" toolbar diagnostic

function.
Debug Toolbar: B B[= X)&

You can find the toolbar instructions in the “detailed annotation of operation
interface”.

What is ""state monitoring™?

State monitoring shows the current value of the PLC data and the information of the
current state.You can monitor, read, write, and enforce PLC data values by using the
status table.When the program runs, there are two ways to view the PLC data
dynamics.

Status table monitoring Displays the data status in the table: you can specify
address, data type, value, and forced.

Program status monitoring Displays data status in the program editor window:
the current PLC data value is displayed on the STL statement or LAD graph.

Program status monitor window and status table monitor window can be run

69

simultaneously:
PLC data written or forced in the state table window will be applied to the program

status monitor window.

The conditions of Viewing data status

1.X Ladder and PLC communicate successfully.

2.Download the program to the PLC successfully.

3.To view the continuous changes of the PLC data state , the PLC must be located in
the RUN mode.

4.1f the program that you monitor is not implemented, there will not be a state
display.

Attention:

If the program downloads successfully, you have to convert the PLC from the STOP
mode to the RUN mode to run the program.Because in STOP mode, you will not be

able to see the expected results of the program logic operation.

How to view data status

g

In RUN mode, click on the connection to monitor the program. Write the
address of the data that you want to view in the state table , the status table will
show its current value.

The color of execution status:
Contact: when the contact is switched on, the instruction will change the color.

Coil: when the output is switched on, the instruction will change the color .

M0,0 |1 QO.0 1
| | ()
Qo.101

— (-

70

State values are collected in a continuous manner or snapshot manner

Continuity

1.0pen the program editor window and start the “program status monitoring”.When
PLC is in the RUN mode, you can view the continuous state of the program data.
2.0pen the status table window and start the “status table monitoring”.When PLC is
in the RUN mode, you can view the continuous state of the program data.

Snapshot

The PLC is converted to STOP mode,you can collect a single status update.When PLC
is in the STOP mode, you can use the "multiple scan™ and "single scan™ functions.
PLC RUN / STOP mode

Use the following methods to change the PLC operation mode:

1.Click the "run" button to execute the RUN mode.Or click the "stop" button to
execute the STOP mode.

2.Select the PLC > run menu command to execute the RUN mode, Or select PLC >
stop menu command to execute the STOP mode.

3.Insert a STOP instruction in the program.

Attention:

When the PLC is located in STOP mode, you can perform the following operations:
1.Use the status table or the program status monitoring window to see the current
value of the data.

2.Perform a limited number of scans.

When PLC is in RUN mode, you can't use the "first scan" or "multiple scan" function.
When PLC is in RUN mode,You can write and force data in the status table. You can
also perform the following operations:

1.Use status table to view the continuous state of the program data.

2. Use the program status monitoring window to view the continuous state of the

program data.

71

Mandatory and cancel the mandatory
Forced Enter the address and its value that you want to force in the state table.
Then select the mandatory function.Before canceling the mandatory, the mandatory

function has been effective.

Status Chart
Address Data Type Value Forced
0.0 BOOL |0 Unforced |-
IB1 SINT]
Q0.0 BOOL 1 Faorced

"Mandatory" function covers "read immediately " and "write immediately” functions.
I/0 points can be forced, and other storage areas can not be forced.

Cancel the mandatory Select “unforced” in the status table to cancel mandatory.
How to perform a limited number of scans

Single scan:

1.PLC must be set to STOP mode.

2.Select PLC> single scan from the menu bar.

Multiple scans:

1.PLC must be set to STOP mode.

2.Select PLC> Multiple scans from the menu bar.

Dialog box appears as follows:

[xladder lili-r

Execute Sacs

| Ok J | Cancel |

e

3.Enter the value of the number of scans, click “OK”.

72

5.8 PLC operation and options

Elements of the control program

Ladder Program

In the LAD program, the basic elements of the logic are represented by contacts, coils,
and boxes.

The input is represented by a symbol called a contact.Contact is divided into normally
open contact and normally closed contact.

Normally open contact: a contact that is open in nature.

Normally closed contact: a contact that is closed in nature.

The output is represented by a symbol called a coil.

The blocks are function blocks with various functions.The blocks can make
programming easier.

STL program

The STL program elements are represented by instructions.Ladder diagram and

instructions are as follows:

LAD STL
0.0 101 Q0.0 b 100
A

H

Q0.0
System blocks configuration

Instructions: The detailed annotation of operation interface--->System blocks

73

6.X Ladder instructions descriptions
6.1 Bit logic

=-{Z1 Bit Logic
..... 4| _| |_
..... 4| _|l|l'|_
..... 4| _|I|_
..... 4| '|,I'I|'
..... 4| _|N|:|T|_
..... 4| _|p|_
..... 4| _|N|_
..... <3 _[::|
..... <3 _[:Ij
..... <3 _[:Sj
..... <3 _[:SH
..... <3 _[:R}
..... <3 _[:R]:j

6.1.1 Normally open and normally closed

...... -
...... A -l

Input / output Operand Data type
Bit (LAD. STL) LQ,M,SM, T,C,V,S, L Boolean
Input (FBD) LQ,M,SM, T,C,V,S, L, Enable bit Boolean
Output (FBD) l,Q, M, SM, T,C, V, S, L, Enable bit Boolean

74

Normally open and
normally closed

Example:

METWOREK O

When the bit is equal to 1, the normally open contact
is closed, and the normally closed contact is
disconnected.

When the bit is equal to 0, the normally open contact
is disconnected , and the normally closed contact is

closed .

In STL, the normally open contact is represented by
“LD”, "And" and "Or" instructions.
In STL, normally closed contacts are represented by

"NOT", "NOT AND" and "NOT OR" instructions.

METWOREK 1

Eamn

MO.6

75

6.1.2 Normally open immediate and normally closed immediate.

Normallyopen
immediate and normally
closed immediate

— 1

—

When PLC executes the instruction, the immediate instruction
obtains the actual input value, but the PLC does not update
the process image register.

The immediate contact update does not depend on the PLC
scan cycle; it will be updated immediately.

When the actual input point is 1, normally open immediate is
closed.

When the actual input point is 0, normally closed immediate is
closed.

In LAD,normally open immediate and normally closed
immediate instructions are represented by contacts.

Forcing function can’t be used for immediate input instructions.

6.1.3 NOT Reverse instruction

NOT Reverse instruction

—|noT b——

Example:

METWORE

The functions of "NOT instruction" are as follows:
When the input is 0, the output is 1.
When the input is 1, the output is 0.

In LAD, the NOT instruction is represented by a contact.

MO, 1 MO.2

Eamn
p—

M0, 3
| v
| NOT | L, J

76

6.1.4 Rising edge and falling edge

Input / output Operand Data type
Input (FBD) ,Q,M,SM, T,C,V,S, L, Enable bit Boolean
output (FBD) I,Q,M,SM, T,C,V, S, L, Enable bit Boolean

Rising edge and falling
edge When left logic is converted from 0 to 1,Rising edge contact

conduction time is a scan cycle.

When left logic is converted from 1 to O,Falling edge contact

] conduction time is a scan cycle.
—n In LAD, the rising edge and the falling edge are represented
by the contacts.
Example:
NETWORK 2
M1.0 M1.1
| | P (s)
M2.1
—{ s)
Mi.1
| N (R)
M2.1
— r)

77

6.1.5 Output

Input / output Operand Data type
Bit LQ,M,SM, T,C,V,S, L Boolean
Input (LAD) Enable bit Boolean
Input (FBD) ,Q,M,SM, T,C,V,S, L, Enable bit Boolean

Output

The output instruction writes the new value of output bit to
process image register.
In LAD and FBD, when the output instruction is executed, the

PLC will open or close the output bit in the process image

register.
Example:
NETWORE 0
M0.0 MO, 1 M0, 2
| | ¢)
M0, 3
noT | ¢)

6.1.6 Output immediate
Input / output Operand Data type
Bit Q Boolean
Input (LAD) Enable bit Boolean
Input (FBD) [,Q,M,SM, T,C,V,S, L, Enable bit Boolean

78

Output immediate

The new value generated by executing the immediate output
instruction is written to the actual output and the

corresponding process image register.

6.1.7 Set and reset

Input / output Operand Data type
Bit L,Q,M,SM, T,C,V,S, L Boolean
N VB, 1B, QB, MB, SMB, SB, LB, AC, constant, *VD, *AC, *LD Byte

Set and reset

"Set” instruction can make a bit or a series of bits be 1.

"Reset” instruction can make a bit or a series of bits be 0.

The value of N is between 1 and 255.

(s The “reset” instruction can reset the bits of the timer and
(R counter, and can clear the current value of the timer and
counter.
Example:
NETWORK 2
M1.0 Mi.1
| | p | (s)
Mz_.l
—L s)
Ml_.l
| no| (R)
Mz-.l
—L r)

79

6.1.8 Set immediate and reset immediate

Input / output Operand Data type
Bit Q Boolean
N VB, 1B, QB, MB, SMB, SB, LB, AC, constant, *VD, *AC, *LD Byte

Setimmediate and reset

immediate “Set immediate” can set many of points immediately.

“Reset immediate” can reset many of points immediately.
The value of N is between 1 and 128.

—e) "I" means"reference immediately”; The new value generated by
—() executing the instruction is written to the actual output and the

corresponding process image register.

6.1.9 SR instruction

Input / output Operand Data type
S1,R (LAD) Enable bit Boolean
S1,R (FBD) l,Q, M, SM, T,C, V, S, L, Enable bit Boolean
OUT (LAD) Enable bit Boolean
OUT (FBD) l,Q, M, SM, T,C, V, S, L, Enable bit Boolean
XXX LQ,M,V,S Boolean
SR instruction
Bistable trigger is a latch.When both R and S1 are equal to 1, the
™" outputis 1.
T The truth table of the "SR" instruction is as follows:
Instruction S1 R ouT
SR 0 0 Previous state
0 1 0
1 0 1
1 1 1

80

Example:

METWORK 3
M3.0 M3.2
I I =i SR
M3.1
|
6.1.10 RS instruction
Input / output Operand
S, R1 (LAD) Enable bit
S, R1 (FBD) ,Q, M, SM, T,C, V, S, L, Enable bit
OUT (LAD) Enable bit
OUT (FBD) ,Q, M, SM, T,C, V, S, L, Enable bit
XXX LQ, M, V,S

RS instruction

Data type
Boolean
Boolean
Boolean
Boolean

Boolean

Bistable trigger is a latch.When both R1 and S are equal to 1, the

ma—
output is 0.
T The truth table of the "RS" instruction is as follows:

Instruction S R1 ouT

RS 0 0 Previous state
0 1 0
1 0 1
1 1 0

81

Example:

METWORK 4
M3.3 M3.5
—F =
M3.4

L R1

6.1.11 NOP instruction

MNOP instruction

NOP instruction is invalid for user program execution.Can not

use NOP instruction in FBD mode.The value of N is between 0

and 255.

82

6.2 Clock instruction

=1 Clock
. {] READRTC
-..{] SET_RTC

6.2.1 Read and set the real time clock

Input / output

T

Operand Data type

VB, IB, QB, MB, SMB, SB, LB, *VD, *AC, *LD Byte

Read and set the real

time clock

TODR instruction reads the current time and date from the

READ_RTC
—n

—r

SET_RTC

hardware clock and load it into the time buffer of 7bytes

starting at the address T.

The TODW instruction writes the current time and date to
the hardware clock that is specified by the 7 bytes time
buffer at the beginning of the T .

All date and time values must be encoded in USINT format.Please refer to the

following table.
T byte
0

1

direction byte data type
second USINT
minute USINT
hour USINT
date USINT
week USINT
month USINT
year USINT

83

6.3 Communication
—{:l Communications

~~{] GET_ADDR
] SET_ADDR.

6.3.1 Get port address

Input / output Operand Data type
ADDR VB, 1B, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC byte
PORT Constant (0 orl) byte

Get port address

The GET -ADDR instruction reads the PLC port site from the

GET_ADDR
—EN

PORT, and put the value in the address specified in the ADDR.

ADDR.
—PORT

6.3.2 Set port address

Input / output Operand Data type
ADDR VB, 1B, QB, MB, SB, SMB, LB, AC, Constant, *VD, *LD, *AC byte
PORT Constant (0 or1) byte
Setport address
SET- ADDR instruction set the PORT site to the value specified
SET_ADDR
T in the ADDR.
—ADDR. .
_porT The new address is not permanently saved.
Example:
MNETWORK O
M0.0 [1] GET_ADDR
| EN
VB0 [1] qADDR
0—PORT
M0.1 [0] SET_ADDR
| EN
| [
VB1 [0] HADDR.
0—PORT

84

6.4 Compare

=J-{_1] Compare
..... 4| _|==B|_
----- I -|<=B|-
..... 4| _|:~=,B|_
..... 4| _|{B|_
..... 4| _|:~=,=B|_
..... 4| _|{=B|_
..... 4| _|==I|_
----- I -==I)-
..... 4| _|:~=,=I|_
..... 4| _|{=I|_
..... 4| _|:~=,I|_
..... 4| _|{I|_
..... 4| _|==D|_
----- -l -|«=D|-
..... 4| _|:~=,=D|_
..... 4| _|{=D|_
..... 4| _|:~=,D|_
..... 4| _|{D|_
..... 4| _|==R|_
----- I -|==R]-
..... 4| _|}R|_
..... 4| _|{R|_
..... 4| _|}=R|_
..... 4| _|{=R|_
..... 4| _|==5|_
----- - -|2=5]-

6.4.1 Byte compare

Input / output ~ Operand Data type
Input IB, QB, MB, SMB, VB, SB, LB, AC, constant, *VD, *LD, *AC byte
output (FBD) 1,Q, M, SM,T,C,V,S, L, Boolean

Byte compare Byte comparison instructions are used for comparing two

values: IN1and IN2.

e Comparison includes: IN2. IN1>=IN2. IN1<=IN2. IN1>IN2. IN1
<IN2 or IN1 <> IN2.Byte comparison without symbol.

—osp— In LAD, the contact is open when the result is 1.
Attention:

—s|—

The following conditions are serious errors .These errors will
cause the PLC to immediately stop the execution of the
el y stop

program:

—s8— 1.Enter illegal indirect address.

—{ <=B }— 85

2.Enter the illegal real number

Example:

METWOREK O

M0O.0
|

VEBO

VBl
VB2

Ean

| < =B [
VB3
VB4

Eamn

VBS
VEBG

Ea

VBY
VEBE

Eam

VB9
VBE10

Ean

| <=8]
VB11

Eamn

MO, 1

Mo.2

M0.3

MO. 4

MO. 5

MO.6

86

6.4.2 Integer comparison

Input / output
Input

output (FBD)

Operand

Integer comparison

Data type

IW, QW, MW, SW, SMW, T, C, VW, LW, AIW, AC, constant, *VD, *LD,*AC Integer

,Q,M,SM, T,C,V,S, L, Enable bit Boolean

Comparison instructions are used for comparing two values: IN1
and IN2.

Comparison includes: IN1=1IN2. IN1>=1IN2. IN1<=IN2. IN1>
IN2. IN1<IN2or IN1 <> IN2.

Integer comparison with symbol (16#7FFF > 16#8000).

<] . .
. In LAD, when the comparison result is true, the contact
will be open.
| >=1]
In FBD, when the comparison result is true, the output
will be open.
| oot |
| <=I]
Attention: The following conditions are serious errors .
I - I These errors will cause the PLC to immediately stop the
execution of the program:
| < | 1.Enter illegal indirect address.
2.Enter the illegal real number.
Example:
METWORK 0
MQ.0 Vo Ma.1
| |-} ¢)
VW2
VW4 Ma.2
| <1} ¢)
VWe
VW3S Ma.3
| =] ¢)
VW10
Vw12 Ma.4
<=1})
VW14
VW16 M0.5
| > | ¢)
VW18
VW20 M0.6
| <1 | ¢)

Wwaz

87

6.4.3 Double integer comparison

Input / output Operand Data type

Input ID, QD, MD, SD, SMD, VD, LD, HC, AC, constant, *VD, *LD, *AC Double integer

output (FBD) I,Q, M, SM, T,C, V, S, L, Enable bit

Boolean

Comparison double integer instructions are used for
Double integer
comparing two values: IN1 and IN2.
comparison
Comparison includes: IN1=IN2. IN1>=IN2. IN1<=IN2. IN1>
IN2. IN1 <IN2 or IN1 <> IN2.
—| ==D l— . . -
Double integer comparison with symbol (16#7FFFFFFF >
16#80000000).
—— <0 f—
In LAD, when the comparison result is true, the contact
will be open.
—| }=D l—
In FBD, when the comparison result is true, the output
——<p f— will be open.
Attention:The following conditions are serious errors .
— =0 f— These errors will cause the PLC to immediately stop the
execution of the program:
<P 1.Enter illegal indirect address.
2.Enter the illegal real number.
Example:
MNETWORE O
M0O.0 vD0 MO.1
| -0 S
VD4
VD3 MO, 2
| <=0 | {)
vDi2
vDis MO, 3
>0 ¢)
vD20
VD24 MO. 4
<=0 S
vD23
vD32 MO.5
| >0 | ¢)
VD36
vD40 MO.&
| <0 | {
VD44

88

6.4.4 Real number comparison

Input / output Operand Data type
Input ID, QD, MD, SD, SMD, VD, LD, AC, constant, *VD, *LD, *AC Real number
Output (FBD) 1,Q,M,SM,T,C,V,S,L, Enable bit Boolean

Real number

Comparison real number instructions are used for

comparing two values: IN1 and IN2.

comparison
Comparison includes: IN1=IN2. IN1>=IN2. IN1 <=IN2. IN1 >
} ==R } IN2. IN1 < IN2 or IN1 <> IN2.Real number comparison with
symbol.
| < | In LAD, when the comparison result is true, the contact
will be open.
| o | . .
| 7R In FBD, when the comparison result is true, the output
will be open.
| .o |
<R , : . .
P Attention:The following conditions are serious errors .
These errors will cause the PLC to immediately stop the
[|
>=R _
o execution of the program:
| | 1.Enter illegal indirect address.
|‘=:=R [)
2.Enter the illegal real number.
Example:
NETWORE O
MO.0 VDo MO.1
| == | ¢)
VD4
vDa MO.2
| <R | ¢)
VD12
VD16 MO, 3
| =R | ¢)
VD20
VD24 MO. 4
| <& | ¢)
VD23
VD32 MO.5
| >=R | ¢)
VD30
VD40 MO.6
<= ¢)
VD44

89

6.4.5 String comparison

Input / output Operand Data type
IN1 VB, Constant string, LB, *VD, *LD, *AC String
IN2 VB, LB, *VD, *LD, *AC String
Output (FBD) ,Q, M, SM, T,C,V,S, L, Enable bit Boolean

]] Comparison string instructions are used for comparing
String comparison
two ASCII strings: IN1=IN2, IN1<>IN2

In LAD, when the comparison result is true, the

| ==3 } comparison contact will be turned on.

The maximum length of a single constant string is 126
—| < }— bytes.The maximum combined length of the two constant
string is 242 bytes.

Attention:The following conditions are serious errors .
These errors will cause the PLC to immediately stop the execution of the program:
1.Enter illegal indirect address.

2.Enter a string of more than 254 characters in length.

3.The start address and length of the string cannot be put into a specified memory
area.

ASCII constant string data type format:

String is a series of characters and the corresponding memory address, each
character is stored in a byte.The value of the first byte of a string is the length of the
string.If a constant string is entered directly into the program editor or data block,
the string must start and end with double quotation marks ("string constant™).

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String Character | Character | Character | Character | Character Character
length |1 2 3 4 5 254
Byte0 | Bytel Byte 2 Byte3 | Byte4 | Byte5 Byte 254

90

6.5 Convert

= I:l Convert
..... .El B_I
..... .El I_B
..... .El I_DI
..... .El I_S

..... _D DI_I
..... _D DI_R

..... .D DI_S
----- 1] ROUND
----- 1] TRUNC
..... .D R_S
----- {] BCD_I
----- 1] 1.BCD
..... .D]_'r'ﬁ'
..... .D |:’;|'|"|!||
..... .D F'\T.‘!\
..... .D .‘!\-I-H
..... .D H'|"|5|

..... .D S_I
..... .D S_DI
..... .D S_R
----- {] DECO
----- {] ENCO
..... .D SEG

6.5.1 Byte to integer

Input / output Operand Data type
IN VB, 1B, QB, MB, SB, SMB, LB, AC, constant, *AC, *VD, *LD Byte
ouT VW, IW, QW, MW, SW, SMW, LW, AQW, T, C, AC, *VD, *LD, *AC Integer

B toint . . .
yte tointeger Byte to integer: The B-I instruction converts the byte value

to the integer value, and the result is inserted into the

—[EN variable specified by the OUT.Because the byte does not

—iN OuTH- have a symbol, the result does not have extension of the

symbol.

91

6.5.2 Integer to byte

Input / output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, constant, *VD, *LD, *AC Integer

ouT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD Byte
Integerto byte Integer to byte:I-B Instruction converts the value of a

word to a byte value, and the result is inserted into the

il variable specified by the OUT.The numerical range is 0
T to 255. Other values will result in overflow and the
—i OUT— output will not be affected.

6.5.3 Integer to double integer

Input / output Operand Data type
IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, constant, *VD, *LD, *AC Integer
ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double-integer

Integerto double

Integer to double integer: |- DI instruction converts the

integer
value of integer to a double integer value, and the result
ey T is inserted into the variable specified by the OUT.Sign is
_m ouT extended.

6.5.4 Integer to string

Input / output Operand Data type
IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, constant, AC, *VD, *LD, *AC Integer
FMT VB, IB, QB, MB, SB, SMB, LB, constant, AC, *VD, *LD, *AC Byte
ouT VB, *VD, LB, *AC, *LD String

92

[-s instruction: the instruction converts the integer
Integer to string
word to a ASCII string of 8 characters in length.Format

(FMT) specifies the number of digits to the right of the

Is

mEk decimal point.The result string is written in 9
—IN ouTH consecutive bytes from the OUT.

—rmT

lllegal format (nnn>5)

ASCII constant string data type format:

String is a series of characters, each character is stored as a byte.The first byte of a
string defines the length of the string, that is the number of characters.If a constant
string is entered directly into the program editor or data block, the string must start
and end with double quotation marks (“'string constant”).

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String Character | Character | Character | Character | Character Character
length |1 2 3 4 5] 254
ByteO | Bytel Byte 2 Byte3 | Byte4 | Byte5 Byte 254

The following is the definition of Operation number of ITS format:

MSB LSB

C = comma (1) or decimal point (0)

nnn = The number of digits on the right side of the decimal point

The length of the output string is always 8 characters.nnn valid values
are from 0 to 5. If nnn=0, the value will be displayed without a decimal
point.When the value of NNN is greater than 5, the output is displayed
as a string of 8 ASCII space characters . C decides to use a comma or a
decimal point between integer and decimal .The 4 bits above the top of

the format must be zero.

93

6.5.5 Double integer to integer

Input/output Operand Data type
IN VD, ID, QD, MD, SD, SMD, LD, HC, AC, constant, *VD, *LD, *AC Double integer
ouT VW, IW, QW, MW, SW, SMW, LW, AQW, T, C, AC, *VD, *LD, *AC Integer

Double integer to Double integer to integer : DI-I instruction converts the

integer value of double integer to a integer value, and the result is

BT inserted into the variable specified by the OUT.

Large value will result in overflow and the output will not

be affected.

6.5.6 Double integer to real number

Input/output Operand Data type
IN VD, ID, QD, MD, SD, SMD, LD, HC, AC, constant, *VD, *AC, *LD Double integer
ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number

Double integer to real

number Double integer to real number: Instruction converts 32 bit
- signed integer to 32 bit real number, and the result is
-+ inserted into the variable specified by the OUT.
—IM ouT—
Example:
METWOREK 1
MO.0 DI I
| ' EN
1 [
VDO —IN OUTHvw4
DI R
EMN
VDE—IN ouUTHvVDi12
DI_S
EMN
VD16 —IM QOUTHVB100
3—{FMT

94

6.5.7 Double integer to string

Input/output Operand

IN

FMT

ouT

VD, ID, QD, MD, SD, SMD, LD, HC, constant, AC, *VD, *AC, *LD

Data type

VB, IB, QB, MB, SB, SMB, LB, constant, AC, *VD, *LD, *AC Byte

VB, *VD, LB, *AC, *LD

Double integer to string

EM

M

DL S

ouT)

FMT

String

Double integer

Double integer to string: DI-s instruction: the instruction

converts the double integer to a ASCII string of 12 characters in

length.Format (FMT) specifies the number of digits to the right of

the decimal point.The output string is written in 13 consecutive

bytes from the OUT.

lllegal format (nnn>5)

ASCII constant string data type format:

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("'string constant”).

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String | Character | Character | Character | Character | Character Character
length |1 2 3 4 2 254
ByteO | Bytel Byte 2 Byte3 | Byte4 | Byte5 Byte 254

The following is the definition of Operation number of ITS format:

MSB
7 6
0 O

LSB

C =comma (1) or decimal point (0)

nnn = The number of digits on the right side of the decimal point

The length of the output string is always 12characters.nnn valid values are from 0 to

5. If nnn=0, the value will be displayed without a decimal pointWhen the value of

95

NNN is greater than 5, the output is displayed as a string of 12 ASCII space characters.
C decides to use a comma or a decimal point between integer and decimal .The 4 bits

above the top of the format must be zero.
6.5.8 BCD to integer, integer to BCD conversion

Input/output Operand Data type
IN (LAD, FBD) VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, constant, *VD, *AC, *LD word

ouT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC word

BCD to integer, integer The BCD -l instruction converts the binary coded decimal

to BCD conversion value to the integer value, and loads the result into the
BCD_T variable specified by the OUT. “IN” BCD value range is 0 to
T 9999.Integer to BCD instruction converts the integer value
i = to binary coded decimal value and loads the result into
180D the variable specified by the OUT.The range of input
T values is 0 to 9999.
—IM ouTH—
Example:
NETWORK 1
MD.0 (1 BCD_I
[]
VWO [16#9393] N OUT-VW2 (3339
I_BCD
EN
VW4 [1234] HIN OUT}-vwis (1621234

96

6.5.9 ROUND

Input/output Operand

Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, constant, *VD, *LD, *AC Real number
ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double integer
ROUND
The ROUND instruction converts the real number value to a
ROUND double integer value and the result is inserted into the
—EN
variable specified by the OUT. If the fractional part is equal to
—IN OuTH—
or greater than 0.5, the integer part will be added to 1.
Example:
METWORK O
Mo.0 |1 ROUND
]
VDO 23.5 —IM OUT VD4 24

97

6.5.10 TRUNC

Input/output Operand Data type
IN VD, ID, QD, MD, SD, SMD, LD, AC, constant, *VD, *LD, *AC Real number
ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD Double integer
TRUNC TRUNC:Instruction converts 32 bits of real number to 32
bits integer,and the result is inserted into the variable
TRUNC specified by the OUT.
T Only the integer part of the real number is converted, and
= o the fractional part is discarded.
Example:
METWOREK O
MO.0 1 TRUNC
[]
VDO [30.3]—IN QUTHvD4 30

98

6.5.11 Real number to string

Input/output Operand

IN

FMT

ouT

VD, ID, QD, MD, SD, SMD, LD, constant, AC, *VD, *LD, *AC

Data type

VB, IB, QB, MB, SB, SMB, LB, constant, AC, *VD, *LD, *AC Byte

VB, LB, *VD, *AC, *LD

Real number to string

EM

1M

ouT|

FMT

PLC is at most 7 digits.

lllegal format:

nnn > 5

SSSs < 3

String

Real number

R-S:Instruction converts the real number value to a ASCII

string.(FMT) format specifies the conversion accuracy of

the right of the decimal point.

The conversion result is placed in a string starting with

OUT.The output string length specified in the format can

be 3 to 15 characters.The format of real numbers used in

ssss < Required number of characters

ASCII constant string data type format:

String is a series of characters, each character is stored as a byte.The first byte of a

string defines the length of the string, that is the number of characters.If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String | Character | Character | Character | Character | Character Character
length |1 2 3 4 5 | 254
ByteO | Bytel Byte 2 Byte3 | Byte4 | Byte5 Byte 254

99

The following 1s the RTS instruction format (FMT) operand definition:

MSB LSB

ssss = The length of the output string

¢ = Comma (1) or decimal point (0)

nnn = The number of characters of the right of the decimal point.

The length of the output string is specified by the SSSS field.0, 1, or 2 bytes are not
valid.The effective range of the NNN is from 0 to 5.NNN is equal to 0, the output
shows no decimal point.When the NNN value is greater than 5 or when the specified
output string length is too small to store the conversion value, the output string is
filled with ASCII space characters.The C bit specifies usingacomma (C=1) ora
decimal point (C = 0).

Prompt: output string according to the following rules

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with “-” .

3.The starting zero on the left of the decimal point is compressed.

(43 »

4.The size of the output string must be 3 bytes larger than “nnn

5.The value in the output string must be aligned to the right.

Example:
NETWORK,
M0.0 (1 R S
| |
1L EN
123, 4—IN OUTHVBO "123.4
16251 —FMT

100

6.5.12 Integer to ASCII code

Input/output Operand Data type
IN VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC, constant, *VD, *LD, *AC Integer
FMT VB, IB, QB, MB, SB, SMB, LB, AC, constant, *VD, *LD, *AC byte

ouT VB, 1B, QB, MB, SB, SMB, LB, *VD, *LD, *AC byte

Integerto ASCll code | |TA:The instruction converts the integer word to ASCII

characters. (FMT) format specifies the conversion

ITA . . .
_en accuracy of the right of the decimal point.
e ouTh The conversion result is placed in the 8 successive bytes
—FMT

from the OUT.ASCII character number is always 8

characters.

Error condition:

nnn>5

The following 1s the ITA instruction format (FMT) operand definition:
MSE LSE

FMT 7 0
(o fJofofofefn]n]n]

The size of the output buffer is always 8 bytes.nnn = The number of characters of the
right of the decimal point.The effective range of the NNN is from 0 to 5.NNN is equal
to 0, the output shows no decimal point.When the NNN value is greater than 5 ,the
output string is filled with ASCII space characters.The C bit specifies using a comma (C
=1) or a decimal point (C = 0).High 4 bits must be 0.

Prompt: The output according to the following rules

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with “-” .

3.The starting zero on the left of the decimal point is compressed.

4.The value in the output string must be aligned to the right.

101

Example:

ouT ouT ouT ouT ouT ouT
+1 +2 +3 +4 +5
in=12 0 0
in=-123 - 0 1
in=1234 1 2
in=-12345 - 1 2 3
Example:
METWORK 0
MO0.0 1 ITA
| | I
1| EN
1251 QUTHVBD 16=20
16£01—FMT

Address Data Type Value

MO.0 BOOL 1

VED BYTE 1520

VE1 BYTE 1520

VB2 BYTE 15320

VB3 BYTE 1520

VE4 BYTE 15#31

VES BYTE 1532

VBS BYTE 16#2E

VBT BYTE 15333

As shown in Figure:

The integer input is 123; nnn=1

The output value is as follows:

VB7

VB6

VB5

VB4

VB3

VB2

VB1

VBO

16#33

16#2E

16#32

16#31

16#20

16#20

16#20

16#20

3

Space
Space
Space

Space

102

ouT

+
1

2
3
4

ouT

+
U'I-F-LAJM_“J

6.5.13 Double integer to ASCII code

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, constant, AC, *VD, *AC, *LD Double integer
FMT VB, IB, QB, MB, SB, SMB, LB, AC, constant, *VD, *LD, *AC Byte

ouT VB, 1B, QB, MB, SB, SMB, LB, *VD, *LD, *AC Byte

Double integer to Ascll | DTA: The instruction converts the double integer to ASCII

code characters. (FMT) format specifies the conversion

DTA accuracy of the right of the decimal point.
T The conversion result is placed in the 12 successive bytes
:ﬁﬂ T from the OUT.

Error conditions:
FMT high four bits value is greater than 0
nnn >5

The following i1s the DTA instruction format (FMT) operand definition:

MZEB LB
FMT o]

7
[0 fofoJolclnfn]n]

The size of the output buffer is always 12 bytes.nnn = The number of characters of
the right of the decimal point.The effective range of the NNN is from 0 to 5.NNN is
equal to 0, the output shows no decimal point.When the NNN value is greater than
5 ,the output string is filled with ASCII space characters.The C bit specifies using a
comma (C = 1) or a decimal point (C = 0).High 4 bits must be 0.

Prompt: The output according to the following rules

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with “-” .

3.The starting zero on the left of the decimal point is compressed.

4.The value in the output string must be aligned to the right.

Example:

OUT character 0 +1 +2 +3 +4 +3 +6 +7 +8 +9 +10 +11
in=-12 - 0 . 0 0 1 2
in = 1234587 1 2 3 . 4 5 6 7

103

6.5.14 Real number to ASCII code

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, constant, *VD, *LD, *AC Real number
FMT VB, IB, QB, MB, SB, SMB, LB, AC, constant, *VD, *LD, *AC Byte

ouT VB, 1B, QB, MB, SB, SMB, LB, *VD, *LD, *AC Byte

Real number to ASCII RTA:The instruction converts the real number to ASCII

code characters. (FMT) format specifies the conversion

accuracy of the right of the decimal point.

RTA

The conversion result is placed in the output buffer from

—EmT the OUT.The length of the output buffer is 3 to 15

characters.

Error conditions:

nnn>5

§88s< 3

ssss < Number of characters in OUT

The following i1s the RTA instruction format (FMT) operand definition:
MSE LSE

FMT ¥ 0
[s[sfsfsfefnfn]n]

The length of the output string is specified by the SSSS field.0, 1, or 2 bytes are not
valid.The effective range of the NNN is from 0 to 5.NNN is equal to 0, the output
shows no decimal point.When the NNN value is greater than 5 or when the specified
output string length is too small to store the conversion value, the output string is
filled with ASCII space characters.The C bit specifies usingacomma (C=1) ora
decimal point (C = 0).

The output according to the following rules:

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with “-” .

3.The starting zero on the left of the decimal point is compressed.

4. The number of characters of the right of the decimal point is equal to the value of “nnn”.

104

5.The size of the output string must be 3 bytes larger than “nnn” .

6.The value in the output string must be aligned to the right.

Example:
ouT ouT ouT ouT ouT ouT
+ +2 +3 +4 +5
in=12345 1 2 3 4 : 5
in =-0.0004 0 : 0
in=-3.67526 - 3 : 7
in=1.95 2 0
Example:
METWOREK O
MO.0 1 RTA
| | E
{ | BN
123.45—IM OUTHVBO [16%31
laF02—FMT
Status Chart
Address Data Type Value
MO.0 BOOL 1
VBO BYTE 16+31
VB1 BYTE 1632
VB2 BYTE 16+33
VB3 BYTE 1la+2E
VB4 BYTE 16+34
VBS BYTE 16+#35

Convert the real number 123.45 into ASCII code.The output is 6 bytes .

The output:

VB0 VB1 VB2 VB3 VB4 VB5
16#31 16#32 16#33 16#2E 16#34 16#35
1 2 3 . 4 5

105

6.5.15 ATH&HTA

Input/output Operand Data type
IN,OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *AC, *LD Byte
LEN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte
ATH&HTA ASCII to HEX Instruction converts the ASCII characters
startingwith “IN” to the hexadecimal digits starting
ATh with the “out” .The maximum length of the ASCII string
IR is 255 characters.
:iEN ouTr= HEX to ASCII Instruction converts the hexadecimal digits
startingwith “IN” to the ASCII characters starting with
—EN e the “out” .
—N ouTH The length of conversion hexadecimal digits is specified
—LEM

Valid ASCIl input character:

by the LEN.The maximum length is 255.

Numbers 0 to 9 and capital letters A to F.

ASCII Codes: 30 to 39 and 41 to 46.

Error condition: Illegal ASCII code

Exampl

e.

LAD

5.2

Metweork 1

ATH

— ——ew eno

WEIOqIM CUT
F=LEM

E? ‘E? ‘A:
Fvesn (33 | [45 | [41] ATH
VB30 YEB40

106

6.5.16 String to integer

Input/output Operand Data type
IN VB,constant string, LB, *VD, *LD, *AC String
INDX VB, 1B, QB, MB, SB, SMB, LB,constant, AC,*VD, *LD, *AC Byte
ouT VW, IW, Qw, Mw, Sw, SMw, Lw, T, C, AQW, AC, *VD, *LD, *AC Integer

String to integer

S-I: The instruction converts the string value “IN” to the

Jen integer value stored in the OUT, starting with the offset

—m ouTl- INDX location.
—miox

ASCII constant string data type format:

String is a series of characters, each character is stored as a byte.The first byte of a
string defines the length of the string, that is the number of characters.If a constant
string is entered directly into the program editor or data block, the string must start
and end with double quotation marks ("'string constant”).

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String | Character | Character | Character | Character | Character Character
length |1 2 3 4 B | e 254
Byte0 | Bytel Byte 2 Byte3 | Byte4 | Byte5 Byte 254

INDX value is typically set to 1,starting conversion from the first character of the
string.INDX value can be set to other values.This method can be used when the input
string contains characters that are not required to be converted.For example, if the
input string is “Temperature: 77.8” ,you can set INDX value 13 to skip the
characters "Temperature:".

When the end of the string is reached or when the first invalid character is found, the

conversion is terminated.Invalid character is any character other than number (0-9).

107

The following table shows examples of valid and invalid integer input strings:

Valid Input Strings for

String to integer Double Integer

Valid Input Sirings for String to Real

Invalid nput Strings

Input String Cutput Integer Ingout String Cutput Real Input String
by 123 23" 1230 "ATE
"-0045E" -456 "-0045E" -456.0 o
"23 45" 123 "23.45" 123435 441 23"
235" 2345 "+ 345" 234510 123"
"000000q 2388C0" 123 "000o00q 23" 0000001 23 "2
Example:
METWOREK 0
MO.0 [1 51
|| EN
VBO ["12@45 IM OUTHVwW10 (12
1INDX

METWORK 1
Status Chart

Address Data Type Value

Ma.0 BOOL 1

VBO BYTE 16%05

VB1 BYTE 16%31

VB2 BYTE 16%32

VB3 BYTE 16540

VB4 BYTE 16%34

VBS BYTE 16535

Enter the string "12@45”.The S-l instruction converts the string from the first

character, and the result is an integer 12.

108

6.5.17 String to double integer

Input/output Operand Data type
IN VB, constant string, LB, *VD, *LD, *AC String
INDX VB, 1B, QB, MB, SB, SMB, LB,constant, AC,*VD, *LD, *AC Byte
ouT vD, 1D, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double integer

String to double integer

S- DI:The instruction converts the string value “IN” to the

e double integer value stored inthe “OUT” , starting with the

dm ouT- offset INDX location.
IMDX

ASCII constant string data type format:

String is a series of characters, each character is stored as a byte.The first byte of a
string defines the length of the string, that is the number of characters.If a constant
string is entered directly into the program editor or data block, the string must start
and end with double quotation marks ("'string constant”).

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String | Character | Character | Character | Character | Character Character
length |1 2 3 4 B | e 254
ByteO | Bytel Byte 2 Byte3 | Byte4 | Byte5 Byte 254

INDX value is typically set to 1,starting conversion from the first character of the
string.INDX value can be set to other values.This method can be used when the input
string contains characters that are not required to be converted.For example, if the
input string is “Temperature: 77.8” ,you can set INDX value 13 to skip the
characters "Temperature:".

When the end of the string is reached or when the first invalid character is found, the

conversion is terminated.Invalid character is any character other than number (0-9).

109

The following table shows examples of valid and invalid integer input strings:

Valid Input Strings for

String to integer Double Integer

Valid Input Sirings for String to Real

Invalid nput Strings

Input String Cutput Integer Ingout String Cutput Real Input String
23" 123 iy 1230 ozt
"-00456" -456 "-00456" -456.0 "
"23 45" 123 "23.45" 123435 441 23"
235" 2345 "+ 345" 23450 T 23"
"0000001 238BCD" 123 "0000001 23" 0000001 23 23"
Example:
METWORK O
MO.0 1 s DI
=
VBO ["123B57] —IN ouUT—vD10 123
—INDX
Status Chart

Address Data Type Value

MO.0 BOOL 1

VEO BYTE 16505

VE1 BYTE 16531

VB2 BYTE 16#32

VB3 BYTE 16533

VB4 BYTE 16#42

VES BYTE 16535

Enter the string "123B5” .The S- DI instruction converts the string from

the first character, and the result is a double integer 123.

Because B is an invalid character, the characters after B are no longer

converted.

110

6.5.18 String to real number

Input/output Operand Data type

IN VB,constant string, LB, *VD, *LD, *AC String

INDX VB, 1B, QB, MB, SB, SMB, LB,Constant, AC,*VD, *LD, *AC Byte

ouT vD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number

String to real number

S-R:The instruction converts the string value “IN” to the

—EN real number value stored in the “OUT” , starting with

i ouTH the offset INDX location.
IMNDX

ASCII constant string data type format:

String is a series of characters, each character is stored as a byte.The first byte of a
string defines the length of the string, that is the number of characters.If a constant
string is entered directly into the program editor or data block, the string must start
and end with double quotation marks ("'string constant”).

The following memory map shows the format of the string data type.The length of a

string can be between 0 and 254 characters.The maximum length of the string is 255

bytes.

String | Character | Character | Character | Character | Character Character
length |1 2 3 4 B | e 254
Byte0 | Bytel Byte 2 Byte3 | Byte4 | Byte5 Byte 254

INDX value is typically set to 1,starting conversion from the first character of the
string.INDX value can be set to other values.This method can be used when the input
string contains characters that are not required to be converted.For example, if the
input string is “Temperature: 77.8” ,you can set INDX value 13 to skip the
characters "Temperature:".

When the end of the string iIs reached or when the first invalid character
is found, the conversion is terminated. Invalid character is any character

other than number (0-9).

111

This instruction does not generate overflow errors, but only converts the
string to real number and then terminates the conversion.

For example, the string "1.234E6" will be converted to a real number value
“1.234” without generating an error message.

The following table shows examples of valid and invalid integer input strings:

Valid Input Strings for

String to integer Double Integer Valid Input Sirings for String to Real Invalid nput Strings

Input String Cutput Integer Ingout String Cutput Real Input String
23" 123 23" 12310 AT
"_045E" -45E "OD45E" 4560 B
"M23.45" 123 M23.45" 12345 "+l 23"
"+2345" 2345 "+2345" 23450 "1 23"
"0000001238BC0" | 123 "D00000T 23" 000000123 " 123"
Example:
NETWORK 0
MO.0 (1 S R
™
VBO [72.3457 —IN OUTVD10 [2.345
1—{INDX
Status Chart
Address Data Type Value
MO.0 BOOL 1
WEBO BYTE 16#05
VB1 BYTE 15%32
VB2 BYTE 16#2E
VB3 BYTE 16#33
VB4 BYTE 16#34
VBS BYTE 16#35
Input string “2.345” and output the real number 2.345

112

6.5.19 DECO

Input/output Operand Data type
IN VB, IB, QB, MB, SMB, LB, SB, AC, constant, *VD, *LD, *AC Byte
ouT VW, IW, QW, MW, SMW, LW, SW, AQW, T, C, AC, *VD, *AC, *LD word
DECO The low four bits value of input byte is n, the nth bit of the
output word is equal to 1.
DECO
-+ The other bits of the output word are set to 0.
—IM QUTH—
Example:
NETWORK
M0.0 (1 DECO
L EN
VBO [160F] —{IN OUT |-VW10 [1658000

The low four bits value of VBO is 15, the 15th bit of the VW10 is equal to 1.

The other bits of the VW10 are set to 0.

113

6.5.20 ENCO

Input/output Operand Data type

IN VW, IW, QW, MW, SMW, LW, SW, AIW, T, C, AC, constant, *VD, *AC, *LD Word

ouT VB, IB, QB, MB, SMB, LB, SB, AC, *VD, *LD, *AC Byte
ENCO

ENCO: The nth bit of the input word is equal to 1.The low

ENCOD
i four bits value of output byte is n.
—IN QuTH
Example:
METWIORK O
Ma, 0 ENCO

VW0 (1653000 —IN OUT—VB10 | 16=0F

As shown in the above figure: The 15th bit of the input word vwO is equal to 1.The
low four bits value of output byte vb10 is 15.

114

6.5.21 Seven segment code

Input/output Operand

IN

ouT

Data type
VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte
VB, IB, QB, MB, SMB, LB, AC, *VD, *AC, SB, *LD Byte

Seven segment code

SEG
EMN

gl OUT]

SEG:The instruction generates the bits of the seven

segment.

The low four bits value of input byte is converted.

Seven segment code table:

{1 Segment (OUTS (1M Segment COUTS
LsD Display -gfe decha LsD Display | -ufe dcha
0 0 gg11 1111 8 o 0111 1111
1 ! gooo o110 A g o 0110 0111
2 2 0101 1011 flglb A 0 D111 0111
- =)
3 3 0100 1111 el |c B o 0111 1100
4 u 0110 0110 - C C o011 1001
_ d
5 g 0110 1101 D o 0101 1110
B 5 0111 1101 E = 0111 1001
7 E 0000 0111 F = 0111 0001
Example:
NETWORK, 0
M0.0 (1 SEG
| |
| | EN
VBO [16#08] oI OUTHVB1 [1627F
Analysis:

The low four bits value of VBO is 8.The value of the output byte VB1 is 16#7F.The

result of converting VB1 to binary is 2# 0111 1111 .

115

6.6 Counter

— {:l Counters

6.6.1 CTU

Input/output Operand Data type

C xxx Constant(CO—C255) Word

CU (LAD) Enable bit Boolean

CU (FBD) l,Q, M, SM, T,C,V,S, L, Enable bit Boolean

R (LAD) Enable bit Boolean

R (FBD) l,Q, M, SM, T,C,V,S, LEnable bit Boolean

PV VW, IW, QW, MW, SMW, LW, AIW, AC, T, C,constant, *VD, *AC, *LD, SW Integer

cTU CU bit gets a high level and the current value of the
counter plus 1.When the current value is greater than or
oy CTU

equal to the preset value, the counter bit opens.When R
gets a high level, the counter is restored.The maximum

value of the counter is 32767.

Counter range: C xxx=C0 ~ C255

The counter number of each counter is different.

Example:
NETWORK 0
M0.0 c1
| S
M0.1

E=]

116

6.6.2CTD

Input/output Operand Data type
CxXX Constant(CO—C255) Word
CD (LAD) Enable bit Boolean
CD (FBD) l,Q, M, SM, T,C, V,S, L,Enable bit Boolean
LD (LAD) Enable bit Boolean
LD (FBD) ,Q, M, SM,T,C,V,S, LEnable bit Boolean
PV VW, IW, QW, MW, LW, SMW, AC, T, C, AIW,constant, *VD, *AC, *LD, SW Integer
cTD The bit of CD is converted from 0 to 1 and the current
value minus 1. When the current value is equal to 0, the
~ counter is opened and counter stops count When the LD
do bit is equal to 1,counter bit is restored and the preset
oy value is loaded into the current value.

Counter range: C xxx=C0~C255

Attention: The counter number of each counter is different.

Example:
NETWORK 0
M0.0 co
o o
M0.1

117

6.6.3CTUD

Input/output Operand Data type
C xxx Constant(C0—C255) word
CU, CD (LAD) Enable bit Boolean
CU, CD (FBD) [,Q, M, SM, T,C,V,S, L,Enable bit Boolean
R (LAD) Enable bit Boolean
R (FBD) [,Q, M, SM,T,C,V,S, L,Enable bit Boolean
PV VW, IW, QW, MW, LW, SMW, AC, T, C, AlW,constant, *VD, *AC, *LD, SW Integer
CcTUD CU bit gets a high level and the current value of the
_le; ©TuD counter plus 1.The bit of CD is converted from 0 to 1 and

the current value minus 1. When the current value is

greater than or equal to the preset value, the counter bit

opens.The maximum value of the counter is 32767, and

the minimum value is -32768.When R gets a high level, the

counter is restored.

Counter range:

C xxx=C0~C255

Attention: The counter number of each counter is different.

Example:

METWORK 0

MO.0 O

C25

J)

MO.1 0

-y CTUD

J)

MO.2 [0

J)

118

6.7 Floating point calculation

—-{7] Floating-Point Math
1] ADD_R
1] SUB_R
1 MUL_R
{] DIV_R
1] 5QRT
1 5N
1 cos
1] TAN
1 N
1 Exp
1 PID

6.7.1 ADD-R&SUB-R

Input/output Operand Data type
IN1, IN2 VD, ID, QD, MD, SD, SMD, LD, AC,constant, *VD, *LD, *AC Real number
ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number
ADD-R&SUB-R ADD-R:Adding N1 and N2, the result is put into the
output buffer.
ADD_R
N SUB-R:N1 minus N2, the result is put into the output
—{mn1 ouT buffer.
—m2 _
N1, N2, and OUT are 32 bits of real numbers.
| InLAD and FBD: N1 +IN2=OUT
IN1 - IN2 = OUT
—IN1 ouT
—m2

Special memory bit:

SM1.0 Zeroresult
SM1.1 Overflow
SM1.2

Negative result

SM1.1is used to indicate overflow errors and illegal values.

119

Example:

NETWORK 0

M0.0 |1 ADD R

-

1 | EN
30.23IN1 OUT-VDO [20.55
80.32—jIN2

M0.2 1 SUB_R

-

1 | EN
166.36—{IN1 OUTHVD10 [-393
553,58 —IN2

120

-

6.7.2 MUL - R&DIV -R

Input/output Operand Data type
INZ, IN2 VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number
ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number
MUL - R&DIV -R o _ _
MUL - R:IN1 multiplied by IN2, the result is put into the
B MUL_R output buffer.
DIV - R:IN1 divided by IN2,the result is put into the output
—IN1 ouT
—jinz buffer.
SR IN1, IN2, and OUT are 32 bits of real numbers.
- In LAD and FBD: IN1* IN2 = OUT
—In1 ouTH IN1/IN2 =0UT
—IN2

error conditions:
SM1.1 Overflow
SM1.3 Thedivisoris 0
Special memory bit:
SM1.0 Zero result
SM1.1 Overflow
SM1.2 Negative result

SM1.3 Thedivisoris 0

121

Example:

METWORK O
Mo.0 |1 MUL_R
L EN
25.36—IN1 OUT—=vDo [919.3
368, 25IN2
Mo, 2 DIV_R
| | EN
I |-
5693.484IM1 OoUT—vD10 [2.21836
2566.53—IM2
6.7.3 SQRT
Input/output Operand Data type
IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number
ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number
SQRT SQRT:Enter a 32 bits real number(IN).Take “IN” square
root and output 32 bits real number.
SQRT Formula:
—EN
JIN=0OUT
—IM OUT—
error conditions:
SM1.1 Overflow

Special memory bits:
SM1.0 Zero result
SM1.1 Overflow
SM1.2 Negative result

SM1.1is used for indicating overflow errors and illegal values.

122

6.7.4 SIN

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

SIN SIN: Perform trigonometric operations on the input
radian value and put the result into OUT.You can use the
N SIN angle value multiplied by 1.745329E-2 to get the value of
the radian.The value of the input “IN” is radian .
—IN OUT—

SM1.1 is used for indicating overflow errors and illegal
values.

error conditions:
SM1.1 Overflow
Special memory bit:
SM1.0 Zero result
SM1.1 Overflow

SM1.2 Negative result

123

6.7.5COS

Input/output Operand Data type
IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number
ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number
oS COS:Perform trigopnometric operations on the input
radian value and put the result into OUT.You can use the
Cos angle value multiplied by 1.745329E-2 to get the value of
T the radian.The value of the input “IN” isradian .
= = SM1.1 is used for indicating overflow errors and illegal
values.

error conditions:
SM1.1 Overflow
Special memory bit:
SM1.0 Zero result
SM1.1 Overflow

SM1.2 Negative result

124

6.7.6 TAN

Input/output Operand Data type
IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number
ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number
TAN TAN:Perform trigonometric operations on the input
radian value and put the result into OUT.You can use the
TAN angle value multiplied by 1.745329E-2 to get the value of
T the radian.The value of the input “IN” is radian .
- = SM1.1 is used for indicating overflow errors and illegal
values.

error conditions:
SM1.1 Overflow
Special memory bit:
SM1.0 Zero result
SM1.1 Overflow

SM1.2 Negative result

125

6.7.7 LN

Input/output Operand Data type
IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number
ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number
LN
i LN: Use the input value to perform natural logarithm
T calculation and put the result in OUT.
i et The output value x 2.302585 = Natural logarithm of 10

SM1.1 is used for indicating overflow errors and illegal values.

error conditions:

SM1.1 Overflow
Special memory bit:
SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

126

6.7.8 EXP

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number
EXP

EXP:Input value is N and output value is g'.

EXp N is a real number.

SM1.1 is used for indicating overflow errors and illegal

values.

Example:

5 cube = 5"3=EXP(3*LN(5))=125

The cube root of 125 = 1257(1/3)=EXP(1/3)*LN(125))=5

5 cubic square root = 5°(3/2)=EXP(3/2*LN(5))=11.18034
error condition:

0006 Indirect address

SM1.1 Overflow

Special memory bit:

SM1.0 Zeroresult

SM1.1 Overflow

SM1.2 Negative result

127

6.7.9 PID
Input/output Operand Data type
TBL VB Byte
LOOP Constant(0 to 7) Byte
PID According to the parameters in the TBL,PID
instruction performs the PID operation.Up to 8 PID
FID instructions can be used in the program,the value

EM

TABLE
LOOP

of LOOP is the loop number of PID.PID loop number
can not be the same, otherwise i1t will cause

interference.Parameters in the TBL parameter

table includes: Process, set value, output, gain, sampling time,

integration time, differential time, the last time integral term, the last

time the amount of the process.

The parameter table contains 36 bytes:

Offset Meaning Format Type Explain

0 PV Process DINT Input 0.0~1.0
quantity

8 Mn Output value DINT Input/Output | 0.0~1.0

12 Kc gain Input Ratio constant

16 Ts Sampling time DINT Input Ms Positive

20 T, Integral time DINT Input S Positive

24 T, Differential time DINT Input S Positive

28 MI .., Lasttime DINT Input/Output | Last time
integral value integral value

32 PV . lasttime DINT Input/Output | Last time

process

process

128

Mathematical formula of PID loop instruction:

M, = MP, + MI, + MD,

M, - Output value
MP, : Proportion term
MI, - Integral term

MD, : Differential term

Proportion term

MP, = K. * (SP, - PV.)

MP, : Proportion term
K. - gain
SP, : Set point

PV, : Process quantity

Integral term:

MI, =K. * T. 7/ T, * (SP, - PV,) + MI,,

MI, : Integral term
K. - gain

T. - Sampling time
T, - Integral time
SP, : Set point

PV, : Process quantity

MI.., : Last time integral term

Differential term:

MD, = K. * T, / T, * (PV,., - PV,)

MD, : Differential term

129

K. - gain

T, : Differential time

T, : Sampling time

PV., : Last time process variable

PV, : Process variable

130

6.8 Integer operations

{1 Integer Math
..... .D ADD_I
..... .D ADD_D
..... .D SUB_I
..... .D SUB_D
..... .D ML

..... .D MUL_I
..... .D MUL_D
..... .D DIy

..... .D DI'|I|'_I
..... .D DI'|I|'_D
..... .D INC_B
..... .D INC_".'I'JI
..... .D INC_D
..... .D DEC_B
..... .D DEC_II'I'JI
..... .D DEC_D

6.8.1 ADD-I&SUB-I

Input/output Operand

Data type

IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, AC, LW, AlW,constant, *VD, *LD, *AC Integer

ouT VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *LD, *AC Integer

ADDHI&SUB-I

ADD_I
—EN

—IN1 OUTH
—IN2

SUB_I

—IN1 OUTH—
—IN2

error conditions:
0006 Indirect address

SM1.1 overflow

ADD-I: IN1 + IN2 = OUT Both input and output are 16
bits integers.
SUB-I: IN1-IN2 =0UT Both input and output are 16 bits
integers.
In LAD and FBD: IN1 +IN2=0UT

INL -IN2 = OUT
SM1.1 is used for indicating overflow errors and illegal

values.

131

Special memory bit:
SM1.0 Zero result
SM1.1 overflow

SM1.2 Negative result

Example:
NETWORK 0
MD.0 (1 ADD_I
| |
1 | EN
VWO [100] —IN1 OUT{-Vw4
VW2 (455 —IN2
SUB_I
EN
VW6 [155) —IN1 OUT[-VW10 [-7
VW8 [7963] —{IN2

132

(5]

(5]
(=]

6.8.2 ADD- DI & SUB- DI

Input/output Operand

IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, AC, HC,Constant, *VD, *LD, *AC

Data type

Double integer

ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double integer
ADD- DI & SUB-DI ADD- DI: IN1 +IN2=0UT Both input and output are 32
bits integers.
ADD_D
| SUB- DIIIN1-IN2=0UT Both input and output are 32
—IN1 ouTH bits integers.
—finz
In LAD and FBD: IN1 +IN2 = OUT
SUB_D IN1 - IN2 = OUT
—{EN
SM1.1 is used for indicating overflow errors and illegal
—IN1 ouUTH
—{m2 values.

error conditions:
0006 Indirect address
SM1.1 overflow
Special memory bit:
SM1.0 Zero result
SM1.1 overflow
SM1.2 Negative result

Example:
M0.0 1 ADD_D
| - |
| | EN
VDO [159631] —{IN1 OUTH-VDS (1712886
VD4 [1560235] —{IN2
SUB_D
EN
VD12 (15451665 —{IN1 OUT|-VD20 [154284
VD16 (23255 —{IN2

133

6.8.3 MUL & DIV

Input/output Operand Data type

IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, LW, AC, AlW,constant, *VD, *LD, *AC Integer

ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double Integer
MUL & DIV MUL:IN1 X IN2=0OUT Input 16 bits integers and output
0L 32 bits integer.
i DIV: IN1/IN2=0OUT Input 16 bits integers and the
—1 ouT— output result is 32 bits.The result includes a 16 bits
—IM2
remainder (high) and a 16 bits quotient (low).
DIV
ey In LAD and FBD: IN1* IN2=OUT
IN1/IN2=0UT
—IM1 ouT—
—IM2

SM1.1is used for indicating overflow errors and illegal values.
error conditions:

0006 Indirect address

SM1.1 overflow

SM1.3 The divisoris 0

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

SM1.3 The divisoris O

134

Example:

6.8.4 MUL -1 & DIV-I

Input/output Operand

IN1, IN2

ouT

METWORK 0
Mo.0 [1 MUL
| |
I-I EM
VWO (1234 N1 QUTYD100 (7008652
VW2 [5675] INZ
DIV
EN
V4 [15258] HIN1 OUTHVD104 (262353
VWG (5] —INZ

Data type

VW, IW, QW, MW, SW, SMW, T, C, LW, AC, AlW,constant, *VD, *LD, *Ac Integer

VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC Integer

MUL -| & DIV-I

EM

M1
M2

MUL_I

ouT]

EM

IM1
M2

DIV 1

oUT]

MUL -I: IN1 * IN2 =OUT Both input and output are 16
bits integers.
DIV-I: INL/IN2=0UT Both input and output are 16 bits
integers. Output is quotient.There is no remainder.
If the output is larger than a word , then set overflow
bit.
In LAD and FBD: IN1*IN2 =QOUT

IN1/IN2 =0UT

SM1.1is used for indicating overflow errors and illegal values.

error conditions:

0006
SM1.1
SM1.3

overflow

The divisoris 0

Indirect address

135

Special memory bit:

SM1.0 Zeroresult
SM1.1 overflow
SM1.2 Negative result
SM1.3 Thedivisoris 0
Example:
NETWORK 0
MO.0 (1 MUL_I
1
VWO [123]—{IN1 OUT|-vw8 (246
Viv2 [2] N2
DIV_I
EN
VW4 [1526] —{IN1 OUT VW10 (33
VWG [45]—{IN2

136

6.8.5 MUL -DI & DIV -DlI

Input/output Operand Data type
IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, HC, AC,constant, *VD, *LD, *AC Double integer
ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double integer

MUL -DI & DIV -DI

MUL_D
—EN

—IN1
—IN2

ouT]

DIV_D
—EN

—IN1
—IN2

ouT]

MUL -DI: IN1 *IN2=0UT Both input and output are 32
bits integers.

DIV -DI: IN1/IN2=0UT Both input and output are 32
bits integers.

Output is quotient.There is no remainder.

In LAD and FBD:IN1 * IN2 = OUT
IN1/IN2=0UT

SM1.1 is used for indicating overflow errors and illegal values.

error condition

S.

0006 Indirect address
SM1.1 overflow
SM1.3 Thedivisoris O

Special memory bit:
SM1.0 Zeroresult

SM1.1 overflow
SM1.2 Negative result
SM1.3 Thedivisoris 0

Example:
NETWORK 0
M0.0 (1 MUL_D
| |
{ | EN
VDO [10546] —{IN1 OUT-VDa (274196
VD4 [25] —{IN2
DIV_D
EN
VD20 [1000] —{IN1 OUT|-vD28 (33
VD24 [26] —{IN2

137

6.8.6 INC-B & DEC-B

Input/output Operand Data type
IN VB, 1B, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte
ouT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte
INC-B & DEC-B INC-B: IN+1=0UT Bothinput and output are 8 bits
integers.
INC_B
—EN DEC-B:IN-1=0UT Both input and output are 8 bits
integers.
—IN OuTH

The two instructions operations do not take symbols.

In LAD and FBD: IN+1=0UT

DEC_B
—{En IN-1=0UT

error conditions:
0006 Indirect address
SM1.1 overflow
Special memory bit:
SM1.0 Zeroresult
SM1.1 overflow

Example:
NETWORK 0
M0.0 (1 INC_B
| |
1 | EN
VBO [62] I OUT}-VBD (62
DEC_B
EN
VB1 [194] N OUT}-VB1 (194

138

6.8.7 INC-W & DEC-W

Input/output Operand
IN VW, IW, QW, MW, SW, SMW, AC, AIW, LW, T, C,constant, *VD, *LD, *AC Integer
ouT VW, IW, QW, MW, SW, SMW, LW, AC, T, C, *VD, *LD, *AC

INC-W & DEC-W INC-W:IN+1=0UT Bothinputand output are 16

bits integers.
NC_W
—EN DEC-W:IN - 1 =0UT Both input and output are 16
Iy UL bits integers.
The two instructions operations take with symbols
DEC W (16#7FFF > 16#8000).
e In LAD and FBD: IN+1=0UT
—M ouTH IN-1=0UT
error conditions:
0006 Indirect address
SM1.1 overflow
Special memory bit:
SM1.0 Zeroresult
SM1.1 overflow
SM1.2 Negative result
Example:
NETWORK. 0
MD.0 1 NC_W
1
VWO [50474] —IN OUT}-VWO (50474
DEC_W
EN
VW10 [15062 —IN QUTH-VW 10 (15062

139

6.8.8 INC -DW & DEC -DW

Input/output Operand Data type
IN VD, ID, QD, MD, SD, SMD, LD, AC, HC,constant, *VD, *LD, *AC Double integer
ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double integer
INC -DW & DEC -DW INC-DW:IN+1=0UT Both input and output are 32
bits double integers.
INC_D
—EN DEC-DW:IN-1=0UT Bothinput and output are 32
bits double integers.
—IN OuTH
In LAD and FBD: IN+1=0UT
DECD IN-1=0UT
- The two instructions operations take with symbols.
—m auT (1L6#7FFFFFFF > 16#80000000).
error conditions:
0006 Indirect address
SM1.1 overflow
Special memory bit:
SM1.0 Zeroresult
SM1.1 overflow
SM1.2 Negative result
Example:
NETWORK 0
M0.0 (1 INC_D
L EN
VDO (105178 <IN OUT|-vDO (105175
DEC_D
EN
VD10 [4294862120] —{IN OUT|-VD10 (4294862120

140

6.9 Interrupt

—I:l Interrupt
...... ES] _[:REFD
...... ES] _[:ENH
------ < -{DI5I)
...... .El ATCH
...... .El DTCH
------ { CLR_EVNT
6.9.1 ENI & DISI
Operand Data type
Nothing Nothing
ENI & DISI
— Ent)
— oIs1)

Interrupt Events:

Interrupt enable (END:If the instruction is activated, all

interrupts can be used.

Interrupt disable (DISI) :If the instruction is activated,

all interrupts can not be used.

When the DISI instruction is used, the interrupt events

will be queued.

11.2 Rising edge PLC_EVENT_INPUTPO | O Highest priority
11.4 Rising edge PLC_EVENT INPUTP1 |1 High priority
Timer interrupt O | PLC_EVENT TIMERO 10 | Low priority
Timer interrupt 1 | PLC_EVENT TIMER1 11 | Lowest priority

141

Example:

NETWORK, 0
SM0. 1 ATCH
|
| EN

o—{InT
10—{EVENT
- { en1)

M0, 1 DTCH

|

| EN
10—{EVENT

M0, 2

o (pist)

142

6.9.2 RETI instruction

Operand Data type
Nothing Nothing

RETI instruction
RETI: When the Logic in front of the RETI instruction is 1,

PLC execution returns from interrupt.

—{(RETI)

Interrupt Events:

11.2 Rising edge PLC_EVENT _INPUTPO | O Highest priority

11.4 Rising edge PLC_EVENT INPUTP1 |1 High priority

Timer interrupt O | PLC_EVENT TIMERO 10 | Low priority

Timer interrupt 1 | PLC_EVENT TIMER1 11 | Lowest priority

Interrupt use guide

Interrupt routine offers a quick response to a particular internal or external event.
Interrupt routine should be concise and efficient, so it can accelerate the speed of
execution.

Limit: DISI, ENI, HDEF, LSCR, and END instructions can not be used in the interrupt
routine.

Example:

METWOREK 1

143

6.9.3 ATCH

Input/output Operand Data type
INT Constant 0-127 Byte
EVNT Constant 0-33 Byte
ATCH
ATCH:The interrupt event (EVNT) is connected to the

_en ATeH interrupt routine number (INT) by the “ATCH” instruction ,

et and then activates the interrupt event.

—EVEMNT

You can attach more than one interrupt events to an interrupt routine.However, an
interrupt event can not be attached to the multiple interrupt routines.When you
attach an interrupt event to an interrupt routine, the interrupt is automatically
enabled.When the DISI instruction is used, the interrupt events will be queued.

If you want to disable a single interrupt event, you can use the "DTCH" instruction.

Interrupt Events:

11.2 Rising edge PLC_EVENT _INPUTPO | O Highest priority

11.4 Rising edge PLC_EVENT INPUTP1 |1 High priority

Timer interrupt O | PLC_EVENT TIMERO 10 | Low priority

Timer interrupt 1 | PLC_EVENT TIMER1 11 | Lowest priority

144

Example:

NETWORK, 0
SM0.1 ATCH
|
| EN

0—{iNT
10—EVENT
——{ Enp)
M0. 1 DTCH
|
| EN
10—EVENT
M0, 2
o (pst)

“ATCH” instruction only needs to be connected once.

145

6.9.4 DTCH

Input/output Operand Data type
EVNT Constant (0-33) Byte
DTCH Interrupt separation (DTCH) instruction cancels the

association between interrupt event (EVNT) and interrupt

DTCH routine, and disables the interrupt event.

The interrupt event (EVNT) is connected to the interrupt

EVENT

routine number (INT) by the “ATCH” instruction , and then

activates the interrupt event.

You can attach more than one interrupt events to an interrupt routine.However, an
interrupt event can not be attached to the multiple interrupt routines.When you
attach an interrupt event to an interrupt routine, the interrupt is automatically
enabled.When the DISI instruction is used, the interrupt events will be queued.

If you want to disable a single interrupt event, you can use the "DTCH" instruction.

Interrupt Events:

11.2 Rising edge PLC_EVENT_INPUTPO | O Highest priority

11.4 Rising edge PLC_EVENT_INPUTP1 |1 High priority

Timer interrupt O | PLC_EVENT TIMERO 10 | Low priority

Timer interrupt 1 | PLC_EVENT TIMER1 11 | Lowest priority

146

Example:

NETWORK. 0
SM0. 1 ATCH
|
| EN

o—{inT
10 —EVENT
——{ enr)
M0, 1 DTCH
|
| EN
10—EVENT
M0, 2
| (orst)

147

6.9.5 Clear interrupt event

Input/output Operand Data type

EVNT Constant Byte

Clear interrupt event

CLR_EVNT

EVENT

CLR - EVNT instruction will remove all types of EVNT
interrupt events in interrupt queue. This instruction is

used for removing unnecessary interrupts.

Interrupt Events:

11.2 Rising edge

PLC_EVENT _INPUTPO | O Highest priority

11.4 Rising edge

PLC_EVENT INPUTPL |1 |High priority

Timer interrupt O

PLC_EVENT_TIMERO 10 | Low priority

Timer interrupt 1

PLC_EVENT TIMER1 11 | Lowest priority

Example:

METWORK 2

5M0.0
| |

CLR_EVNT

13—EVENT

148

6.10 Logic operation

=-{Z Logical Operations
..... .D IN'|I|'_B

..... .D INllu'l_ll'l'.ll

----- 1 INv_DW
-----] WAND_B
----- 11 WAND_W
-----] WAND_D
..... .D I'.'I'JIOR_B
..... .D I'."'J’OR_"."'JI
..... .D I'.'I'JIOR_D
-----] WXOR_B
----- 11 WXOR_W
----- 11 WXOR_DW

6.10.1 INV-B

Input/output Operand

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD
ouT VB, 1B, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD
INV-B

error condition:

0006 Indirect address
Special memory bit:
SM1.0 Zero result
Example:

NETWORK, 0

MO.0 1

=
m
=}
()]
14

IN

NV B

OUT—VB1 16=EE

149

Data type
Byte

Byte

INV -B: The instruction performs the complement

NV_B operation to the input byte and puts the result in OUT.

6.10.2 INV -W

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, T, C, AIW, LW, AC,constant, *VD, *AC, *LD word

ouT VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *AC, *LD word
INV -W

INV -W:The instruction performs the complement

W operation to the input word and puts the result in OUT.

error condition:
0006 Indirect address
Special memory bit:

SM1.0 Zeroresult

Example:

METWOREK O

M0.0 (1 Inv_w

Yo [16%1111) —IN OUTHVwW2 | 16=EEEE

150

6.10.3 INV -DW

Input/output Operand Data type
IN VD, ID, QD, MD, SD, SMD, LD, HC, AC,constant, *VD, *AC, *LD Double word
ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD Double word
INV -DW
S INV -DW:The instruction performs the complement
N operation to the input word and puts the result in OUT.
—IM QOUTH

error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zeroresult

Example:
NETWORK 0
MD.0 (1 INV_DW
[]
VDO (16511111111 —{IN QUT|-VD'10 |16 #EEEEEEEE

151

6.10.4 WAND-B. WOR -B, WXOR -B

Input/output Operand Data type
IN1, IN2 VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte
ouT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD Byte
WAND-B- WOR-B- WAND -B:The instruction performs “And calculation”
WXOR -B on IN1 and IN2.Then puts the result in out.
WOR -B:The instruction performs “OR calculation” on
WAND_B
- IN1 and IN2.Then puts the result in out.
—IN1 ouTH— WXOR -B:The instruction performs “XOR calculation”
—{n2
on IN1 and IN2.Then puts the result in out.
WOR_B
—EN
error condition:
—{IN1 ouT|-
—n2 0006 Indirect address
TXOR B Special memory bit:
N SM1.0 Zeroresult
—IN1 OuTH
—{nz2
Example:
NETWORK 0
M0.0 (1 WAND_B
| EN
VBO [16#FF] —{IN1 OUT|-VBS | 16=AA
VB1 [162AA] N2
WOR_B
EN
VB2 [162AA] —IN1 OUT|-VB7 | 163FF
VB3 (16255 —|IN2
WXOR_B
EN
VB4 [162FF {IN1 OUT|-VB3 | 16=FF
VBS [16#00] —{IN2

152

6.10.5 WAND-W. WOR -W,

WXOR -W

Input/output Operand Data type
IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, AC, LW, AIW,constant, *VD, *AC, *LD word
ouT VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *AC, *LD word
WAND-W. WOR -W - WAND -W:The instruction performs “And calculation”
WXOR -W on IN1 and IN2.Then puts the result in out.
WAND_W WOR -W:The instruction performs “OR calculation” on
—EN .
IN1 and IN2.Then puts the result in out.
—IN]. OLlT— H H o H n
o WXOR -W:The instruction performs “XOR calculation
on IN1 and IN2.Then puts the result in out.
WOR_W
—EM
—iL ouTH error condition:
—M2
0006 Indirect address
WXOR_W))
—EN Special memory bit:
i ouT SM1.0 Zeroresult
—M2
Example:
M0.0 (1 WAND_W
| | EN
VWO [16#1010] —{IN1 OUTVW12 (1621010
VW2 [16#1111] —{IN2
WOR_W
EN
VW4 [16#1010] —{IN1 OUT-VW14 1621010
VWG [—{mz
WXOR_W
EN
VW8 (1621010 —{IN1 OUT-VW16 (1620110
VW10 [16#1100] —{IN2

153

6.10.6 WAND- DW. WOR -DW. WXOR -DW

Input/output Operand

IN1, IN2

Data type

VD, ID, QD, MD, SMD, AC, LD, HC,constant, *VD, *AC, SD, *LD Double word

ouT VD, ID, QD, MD, SMD, LD, AC, *VD, *AC, SD, *LD Double word
WAND- DW - WOR -DW-. | WAND -DW:The instruction performs “And calculation”
WXOR -DW on IN1 and IN2.Then puts the result in out.
WAND_D WOR -DW:The instruction performs “OR calculation” on
—EM .
IN1 and IN2.Then puts the result in out.
_i:; ouTE WXOR -DW:The instruction performs “XOR calculation”
on IN1 and IN2.Then puts the result in out.
WOR_D
—EN
it ouT error condition:
g 0006 Indirect address
WXOR_DW Special memory bit:
—{EN
SM1.0 Zero result
—IN1 ouUTH
—{nz2
Example
M0.0 (1 WAND_D
]
VDO [16#10101010] —IN1 QUTH-VD24 [16510101010
VD4 [16511111111] —IN2
WOR_D
EN
VDB [16%10101010] —IN1 OUT|-VD28 (16511111111
VD12 [16#01010101—IN2
WXOR_DW
EN
VD16 [16#11110000 —IN1 OUT|-VD32 [16£00000101
VD20 [16%11110101—IN2

154

6.11 Move
—l:| Move

MOVE_B
MOVE_W/
MOVE_D
MOVE_R
BLKMOV_B
BLKMOV_W
BLKMOV D
SWAP
MOV_BIR
MOV_BIW

6.11.1 Byte move

Input/output Operand Data type
IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte
ouT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte
Byte move MOV -B:The instruction moves the input byte (IN) to the
output byte (OUT), which does not change the original
FIOVE_B value.
—EM
error condition:
—IM QLT
0006 Indirect address

Example:
NETWORK 0
M0.0 (1 MOVE_B
| |
{ | EN
VBO [255] —{IN QUT|-VB1 [255

155

6.11.2 Word move

Input/output Operand Data type
IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, constant, AC, *VD, *AC, *LD word. integer
ouT VW, T, C, IW, QW, SW, MW, SMW, LW, AC, AQW, *VD, *AC, *LD word. integer
Word move MOV -W:The instruction moves the input word (IN) to
the output word (OUT), which does not change the
N MOVE_W original value.
error condition:
—M OuTH—
0006 Indirect address
Example:
METWORK O
Mo.0 (1 MOVE_W
| EN
VW0 (327563 —IN OUTVW2 (32763

156

6.11.3 Double word move

Input/output Operand Data type
IN VD, ID, QD, MD, SD, SMD, LD, HC, &VB, &IB, &QB,
&MB, &SB, &T, &C, &SMB, &AIW, &AQW AC,
constant, *VD, *LD, *AC Double word, double integer

ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double word, double integer

MOQV -DW:The instruction moves the input double word
Double word move

(IN) to the output double word (OUT), which does not

MOVE_D change the original value.

You can use the "MOVE-D" instruction to create a

pointer.

error condition:

0006 Indirect address

Example:

METWORK 0

M0.0 [1 MOVE_D

™

VDO [10086] 4IN QUT—VD4 [10088

157

6.11.4 Real number move

Input/output Operand Data type
IN VD, ID, QD, MD, SD, SMD, LD, AC,constant, *VD, *LD, *AC Real number
ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number
Real number move MOV -R:The instruction moves the input real number (IN)

to the output real number (OUT), which does not change

MOVE_R the original value.

error condition:

- QuTH- .
0006 Indirect address
Example:
NETWORK, 0
MD.0 1 MOVE_R
| | -
| [| | EM

VDO [235.56 —HIN OUT—VD4 (235,56

158

6.11.5 BLKMOV -B

Input/output Operand Data type
IN VB, IB, QB, MB, SB, SMB, LB, *VD, *AC, *LD Byte
N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte
ouT VB, IB, QB, MB, SB, SMB, LB, *VD, *AC, *LD Byte
H (43 » H H (43 »
BLKMOV —B These successive “N” bytes which start with “IN” are
moved to OUT.
g R The range of N is from 1 to 255.
error conditions:
—IN ouTH—
— 0006 Indirect address
0091 Operating number is out of range
Example:
NETWORK 0
MO.0 (1 BLKMOV_B
1
VBO [135]—{IN OUT|-VB100 135
3N
Status Chart
Address Data Type Value
MO.0 BOOL 1
VED USINT 135
VB1 LISINT 153
VB2 USINT 255
VB100 USINT 135
VB101 USINT 153
VB102 USINT 255

159

6.11.6 BLKMOV -W

Input/output Operand Data type
IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, *VD, *LD, *AC word
N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte
ouT VW, IW, QW, MW, SW, SMW, LW, T, C, AQW, *VD, *LD, *AC word
BLKMOV W BLKMOV -W:These successive “N” words which start with
“IN” are moved to OUT.
The range of N is from 1 to 255.
BLKMOV_W
-+ error conditions:
‘L“ ouTr= 0006 Indirect address
0091 Operating number is out of range
Example:
NETWORK 0
MO.0 (1 BLKMOV_W
]
VWO [100] —IN OUT-VW100 [100
3N
Status Chart
Address Data Type Value
Md.0 BOOL 1
VW0 INT 100
Vw2 INT 101
Wi 4 IMT 102
Wi 100 INT 100
L e INT 101
Vi 104 IMT 102

160

6.11.7 BLKMOV -D

Input/output Operand Data type
IN, OUT VD, ID, QD, MD, SD, SMD, LD, *VD, *AC, *LD Double word
N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte
saoor-5 | SO0 e st doste v
BLKIOV D The range of N is from 1 to 255.
T error conditions:
:LN ouT= 0006 Indirect address
0091 Operating number is out of range
Example:
METWORK O
MO0 1 BLKMOV_D
L
VDO (15563 —IN OUT—VD100 155583
3

161

6.11.8 SWAP

Input/output Operand Data type
IN VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *AC, *LD word
SWAP
SWAP:The instruction interchanges high byte and low
SWAP byte of the input word.
T error conditions:
—i 0006 Indirect address
Example:
METWORK O
M0.0 [i0] SWAP
=i e |
VWO [162ABCD] —IN

4 >+ MAIN (NTO) “INT_1 (INT1) /SBR._0 (SBRO)

15 Chart
Address Data Type Value Forced Address
MD.0 BOOL v}
VW0 WORD 16#ABCD
NETWORE 0
Mo.0 [1] SWAP
| | | |
| - | I =] I Ent
VW0 [16#CDAE] —IN

41+ +| MAIN gNTO).INT_1 (INT1) “SBR_0 (SBRO)

15 Chart
Address Data Type Value Forced Address
M0.0 BOOL 11
Ywo WORD 167CDAB

162

6.11.9 MOV -BIR

Input/output Operand Data type
IN IB, *VD, *LD, *AC Byte
ouT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD byte
MOV -BIR MOV -BIR:Instruction reads the actual input value(byte),then

writes the value to OUT. The process image register is not

MOV_BIR updated.
—fEm
error conditions:
gl
—out 0006 Indirect address

6.11.10 MOV -BIW

Input/output Operand Data type
IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD byte
ouT QB, *VD, *LD, *AC byte
MOV -BIW MOV -BIW: The instruction writes the input value(IN) to

the actual input(OUT) and update the corresponding

MOV_BITW . .
. process image register.
iy error conditions:
—1OUT 0006 Indirect address

163

6.12 Program control

= -7 Program Control

6.12.1 FOR. NEXT

Input/output Operand Data type
INDX VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC Integer
INIT VW, IW, QW, MW, SW, SMW, T, C, AC, LW, AIW,constant, *VD, *LD, *AC Integer

FINAL

VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AlW,constant, *VD, *LD, *AC Integer

FOR. NEXT

FOR
—EN

INDEX
INITIAL
FINAL

—{ BT)

error condition:

0006

indirect address

FOR instruction executes instructions between FOR and
NEXT.You have to specify the current cycle count (INDX),
start value (INIT), and end value (FINAL).NEXT (NEXT)
instruction marks the end of the FOR loop, and the top
value of the stack is set to 1.Use FOR/NEXT to set the
number of loops.Each FOR instruction requires a NEXT
instruction.FOR/NEXT loops can be nested with 8
FOR/NEXT loops.After each execution of the FOR and
NEXT instructions, the INDX value is increased, and the
result is compared with the end value.If the INDX is

greater than the end value, the loop terminates.

164

Example:

NETWORK 0
M0.0 (1 FOR
| | | |
| | 1 P EN
VWO (101 —INDEX
1—{INITIAL
100—FINAL
NETWORK 1
5M0.0 (1 NC_ W
| |
| | EN
VW100 (100 —IN OUTvw100 (100
NETWORK 2
—{ NEXT)
NETWORK 3
Notes:

Cycle times are set to 100 times.At the end of the cycle, the value of VW100 is 100.

165

6.12.2 Jump to label and label

Input/output Data type

n:constant (0~255) word

JMP instruction performs the branch operation to the

Jump to label andlabel | program in the specified tag (n) . When the jump is

accepted, the top value of the stack is 1.
—{) LBL instruction signs the location of n.

You can use the "jump" instruction in the main

™ program, subroutine, or interrupt routine.

You can't jump from the main program to a subroutine

or an interrupt routine.You can use the "jump"

instruction in the SCR segment, but the corresponding

"label™ instruction must be located within the same SCR segment.

Example:
NETWORK 0

M0.0 1

| | { P)

METWOREK 1

SM0.0 1 INC_wW

| | EN

VW100 33128 —{IN QUTH—VW100 (33128

METWOREK 2

- LBL

METWOREK 3

When the M0.0 bit is 1, the value of VW100 is no longer increased.

166

6.12.3 Sequence control relay

Input/output Operand Data type

n S Boolean

Sequence control relay SCR instruction is good at dealing with repetitive
operations.
1 s _
SCR: load the SCR section, you can use the SET
instruction.
—(SCRT] SCRT: Jump to another SCR segment and close the
current SCR segment.
[SCRE) SCRE: The instruction signs the end of SCR segment.
Example:
M0.0 50.1
o P (s
NETWORK 1
50.1
| SCR
5M0.0 Q0.0
| ()
| | L
Qo.1
—)
T101 [100ms
m TON
—PT

167

50.2

—{ 5CRE)

METWORK 2

50,2

— SCR

METWORK 3

5M0.0
| |

{scRT)

Q0.2

— SCRE)

METWORK 4

Ti02
| |

Ea
pu—

Q0.3

T102 [100m

N

TON

50.2

R

168

6.12.4 Return from subroutine

Return from subroutine

RET: Return from the subroutine to the main program.

—{ReT)

Example:
Main program:

METWORE O

MO.2 (1 SBR_0

-

Subroutine:

METWORK O

MO.0 [0

Jo] (reT)

METWOREK 1

5M0.0 (1 INC_D

.|

VD100 &

[9g)

3 —IN oUTH—vVD1o00 &

rJ
[9g)
rJ
Lo

When the MO0.0 bit is 1, return from the subroutine, the following program will no

longer be scanned.

M0.0 1
| | r
{ | { RET)
NETWORK 1
SMO.0 [1 C_D
| |
[| EM
VD100 [234446] —IN OUT}-VD 100 (234446

169

6.12.5 Conditional end

Conditional end

The END instruction terminates the user program .
Notes:
— (e) You can use the "END" instruction in the main program,

but can not be used in subroutine or interrupt routine.

Example:

METWORE O

M0.0 (1 NC_W

™

VW0 [34380] <IN OUTH—VW0 [34380

METWOREK 1

MO.1 /1

| | (Eno)

METWOREK 2

M0.2 1 NC_D

| | EN

VD100 (21826 <IN OUTHVD100 (21526

When the M0.1 bit is 1, the program will not be scanned.

170

6.12.6 STOP

STOP instruction: STOP

Example:

METWORK 0

MO.0 (1 INC_W

]

Wiwd [15500] —IN QUT VW0 | 15500

METWORK 1

MO.1 1

| (sToP)

METWORK 2

MO.2 1 INC_D

]

VD100 8935 —IN OUT—VD100 (5935

When the MO0.1 bit is 1, PLC converts to the STOP mode, all the programs stop

running.

171

6.12.7 Watchdog Reset

WDR clear watchdog time.When the scan cycle is

Watchdog Reset
greater than the watchdog time, the WDR makes the
watchdog not issue a warning.
— wor) Using “WDR” instruction should be careful.The

following programs can be performed after the scan

cycle is completed.

1.Communication

2.1/0 update (except for immediate 1/0)

3.Forced update

4.SM bits update

5.Run time diagnostic program

6.STOP (stop) instruction for interrupt routine

Attention :If you expect scan time will be more than 500 ms, you should use the

WODR instruction to re trigger the watchdog timer.

Example:
METWORK 0
] LBL
SMD.0D
o (wor)
110 0
| 1| { e)

172

6.12.8 Diagnosis LED

Input/output Operand Data type
IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC String
Diagnosis LED . o .
If the value of “EN" is 1, then the LCD will display the string
BIAC_LED from “IN”.
—EN
—IN
Example:
NETWORK 0
M0.0 [1] DIAG_LED
L EN
VBO [Error] <IN

When the value of M0.0 is equal to 1,the LCD will display “Error”.

173

6.13 Shift cycle

(I3 shift/Rotate
..... 1] SHL_B

..... 1] SHL_w
..... 1] SHL_D

..... 1] SHR_BE
..... 1] SHR_W
..... 1] SHR_D
..... 1] ROL_E

..... 1] ROL_W
..... { ROL_D
..... { ROR_E
..... 0 ROR_W
..... { ROR_D
..... { SHRE

6.13.1 SHR -B & SHL -B

Input/output Operand Data type
IN (LAD, FBD) VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte
N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte
ouT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte
SHR -B & SHL-B
SHR -B:Input byte "IN" and move N bits towards the
—EN e right.Then place the results in OUT.
—N ouTl- SHL -B: Input byte "IN and move N bits towards the
i left.Then place the results in OUT.
—En e The moved out bits are filled with zero.If N is greater than
iy outk or equal to 8, you can move up to 8 bits.
—M

SHR -B & SHL -B operations are not signed.

error conditions:
0006 Indirect address
Special memory bit:
SM1.0 ZeroResult
SM1.1 Overflow

174

Example:

NETWORK 0
M0.0 |1 SHL_ B
| | | |
| | 1 P EN
VB0 16210 <IN OUTHVBD (16210
N
SHR_B
EN
VB10 1508 <IN OUTHVB1D (15208
1N

When the value of M0.0 is 1, VBO moves a bit towards the left and VB10 moves a bit

towards the right.

175

6.13.2 SHR -W & SHL -W

Input/output Operand Data type

IN (LAD, FBD) VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC,constant, *VD, *LD, *AC word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte
ouT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC word

SHR-W & SHL-W SHR -W:Input word "IN" and move N bits towards the

SHL_W right.Then place the results in OUT.
T SHL -W: Input word "IN™ and move N bits towards the
:LN oo left.Then place the results in OUT.
The moved out bits are filled with zero.If N is greater than

—EN S or equal to 16, you can move up to 16 bits.

—m auT SHR -W & SHL -W operations are signed. Symbol bit can

e be moved.

error conditions:
0006 Indirect address
Special memory bit:
SM1.0 ZeroResult
SM1.1 Overflow
Example:
M0.0 (1 SHL_W
.| K
VWO [16:#0040] —IN OUTH-VWO [1620040
2N
SHR_W
EN
VW10 [16#0200] —{IN OUT|-VW 10 1620200
2N

When the value of M0.0 is 1, VWO moves two bits towards the left and VW10 moves

two bits towards the right.

176

6.13.3 SHR -DW & SHL -DW

Input/output Operand Data type
IN (LAD, FBD) VD, ID, QD, MD, SD, SMD, LD, AC, HC,constant, *VD, *LD, *AC Double word
N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Double word
ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double word

SHR -DW & SHL -DW

SHL_D

OouT—

SHR_D

be moved.

error conditions:
0006

Special memory bit:

Indirect address

SHR -DW:Input double word "IN" and move N bits towards
the right.Then place the results in OUT.

SHL -DW: Input double word "IN" and move N bits towards
the left.Then place the results in OUT.

The moved out bits are filled with zero.If N is greater than
or equal to 32, you can move up to 32bits.

SHR -DW & SHL -DW operations are signed. Symbol bit can

SM1.0 Zero Result
SM1.1 Overflow
Example:
MO0 1 SHL_D
| | | |
| | 1 P EN
DO [16200000020] <IN OUT Y00 [16200000020
—n
SHR_D
EM
VD10 [16:£00200000—{IN OUT VD10 [16200200000
2—{M

When the value of M0.0 is 1,vDO moves a bit towards the left and VD10 moves two

bits towards the right.

177

6.13.4 ROR -B & ROL -B

Input/output Operand Data type
IN (LAD,FBD) VB, IB, QB, MB, SMB, SB, LB, AC,constant, *VD, *LD, *AC Byte
N VB, IB, QB, MB, SMB, SB, LB, AC,constant, *VD, *LD, *AC Byte
ouT VB, IB, QB, MB, SMB, SB, LB, AC, *VVD, *LD, *AC Byte
ROR -B & ROL -B ROR -B & ROL -B :Instruction rotates the input byte to
—— the right or to the left n bits and puts the result in the
—EN) output byte (OUT).Rotation is cyclic.
_m ouT If N is greater than or equal to 8,the remainder of N/8 is
N the number of rotation bits.If remainder is equal to 0,
ROR_B Rotation operation is not performed and the value of
- SM1.0is 1.If the rotation operation is performed, the
—N ouT- final rotation bit is copied to overflow bit (SM1.1).
—

ROR -B & ROL -B operations are not signed.

error conditions:
0006 Indirect address
Special memory bit:
SM1.0 When the value of the loop is zero, SM1.0 is set to 1.
SM1.1 Overflow bit

Example:
MD.0 (1 ROL_B
| | | & |
1 | | P EN
VBO [16202] —{IN OUT[-VBO [16202
1M
ROR_B
EN
VB10 [1608] —{IN OUT[-VB10 [15208
1M

When the value of M0.0 is 1,VBO moves a bit towards the left and VB10 moves a bit

towards the right circularly.

178

6.13.5ROR -W & ROL -W

Input/output Operand

Data type

IN (LAD,FBD) VW, T, C, IW, QW, MW, SW, SMW, LW, AC, AlW,constant, *VD, *LD, *AC word
N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte
ouT VW, T, C, IW, QW, MW, SW, SMW, LW, AC, *VD, *LD, *AC word
ROR -W & ROL-W ROR -W & ROL -W :Instruction rotates the input word to
the right or to the left n bits and puts the result in the
_En RoLw output word (OUT).Rotation is cyclic.
iy ouTL If N is greater than or equal to 16,the remainder of N/16
o is the number of rotation bits.If remainder is equal to O,
N ROR_W Rotation operation is not performed and the value of
| SM1.0is 1.If the rotation operation is performed, the
::qN T final rotation bit is copied to overflow bit (SM1.1).

ROR -W& ROL -W operations are not signed.

error conditions:
0006 Indirect address

Special memory bit:

SM1.0 When the value of the loop is zero, SM1.0 is set to 1.
SM1.1 Overflow bit
Example:
Mo.0 |1 ROL_W
] e
VW0 [16=0002] —IN ouT
14N
ROR_W
EM
VW10 [16=2000] —IN ouT
2

FVYW0 |15

S5
10 LU

When the value of M0.0 is 1,VWO0 moves a bit towards the left and VW10 moves two

bits towards the right circularly.

179

6.13.6 ROR -DW & ROL -DW

Input/output Operand Data type

IN (LAD, FBD) VD, ID, QD, MD, SD, SMD, LD, AC, HC,constant, *VD, *LD, *AC Double word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte
ouT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double word
ROR -DW & ROL -DW ROR -DW & ROL -DW :Instruction rotates the input
double word to the right or to the left n bits and puts the
_en RoLp result in the output double word (OUT).Rotation is cyclic.
g ouTl If N is greater than or equal to 32,the remainder of N/32
M is the number of rotation bits.If remainder is equal to 0,
ROR_D Rotation operation is not performed and the value of
T SM1.0is 1.If the rotation operation is performed, the
:LN ot final rotation bit is copied to overflow bit (SM1.1).

ROR -DW& ROL -DW operations are not signed.
error conditions:

0006 Indirect address

Special memory bit:

SM1.0 When the value of the loop is zero, SM1.0 is set to 1.

SM1.1 Overflow bit

Example:
METWORK 0
M0.0 1 ROL_D
| | | |
| | 1 P EN
VDO [16500000002] —IN OUTHVDO [16=00000002
—H
ROR_D
EM
VD10 [1620000000 —IN OUTHVD10 (1620000000
2—N

180

6.13.7 SHRB

Input/output Operand Data type

DATA,S BIT I,Q,M,SM,T,C,V,S, L Boolean

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Boolean
SHRE SHRB instruction moves the DATA value to the shift

register. S_BIT specifies the lowest bit of the shift

SHRB

—en register.N specifies the length of the shift register and the
_oata shift direction (shift plus = N, shift minus = -N).The moved
:i-m out bit is placed in the overflow memory bit (SM1.1).The

instruction is defined by S_BIT and N.

error conditions:
0006 Indirect address
0091 Operating number is out of range
0092 Count field error
Special memory bit:

SM1.1 Overflow bit

Example:
NETWORK 0
M0.0 [0 SHRB
Tl | & |
1| 1 P EN
M10.0 (1 —DATA
V0.0 (1) —5_BIT
4—{N

When the value of M0.0is 1, the value of M10.0 is moved to V0.0, the value of V0.0
is moved to V0.1, the value of V0.1 is moved to V0.2, the value of V0.2 is moved to
V0.3, the value of V0.3 is moved to SM1.1.

If N is negative, the shift direction is opposite.

181

6.14 Character string
=-{Z1 String

“.{] STR_LEN
“.{] STR_CPY
L] SSTR_CPY
“{] STR_CAT
..... .D S-I-R_FND
‘-] CHR_FND

6.14.1 String length

Input/output Operand Data type
IN VB,Constant string, LB, *VD, *LD, *AC Character string
ouT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte
String length STR-LEN:Instruction output “IN” string length.
The longest constant string is 126 bytes.
| error conditions:
0006 Indirect address
—InM QuTH

0091 Operand range
ASCII constant string data type format:

String is a series of characters, each character is stored as a byte.The first byte of a
string defines the length of the string, that is the number of characters.If a constant
string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

METWORK O

MO.0 1 STR_LEN

VBO 71234557 —IN OUTHVEB100 (&

When the string is "123456", the length of the string is 6.

182

6.14.2 Copy string

Input/output Operand Data type

IN VB, Constant string, LB, *VD, *LD, *AC Character string

ouT VB, *VD, LB, *LD, *AC Character string
Copy string

STR-CPY:Instruction copies the “IN” string to the “OUT”

STR_CPY string.

The longest constant string is 126 bytes.

error conditions:
0006 Indirect address
0091 Operand range
ASCII constant string data type format:
String is a series of characters, each character is stored as a byte.The first byte of a
string defines the length of the string, that is the number of characters.If a constant
string is entered directly into the program editor or data block, the string must start

and end with double quotation marks (“'string constant”).

Example:
NETWORK 0
Moo 1 STR_CPY
| |
| | En
VBO ["1234567 —{IN OUT|-VB100 ["123456

When MO0.0 is 1,string starting with VBO is copied to the string starting with

VB100 .VB100 storage is an integer 6, VB101 storage is character "1", VB102 storage
is character "2", VB103 storage is "3", VB104 storage is "4", VB105 storage is "5",
VB106 storage is "6".

183

6.14.3 SSTR-CPY

Input/output Operand Data type

Iput VB,Constant string, LB, *VD, *LD, *AC string

INDX, N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

ouT VB, *VD, LB, *LD, *AC string
SSTR -CPY

SSTR-CPY:Copy a portion of the input string to the OUT

SSTR_CPY string.If the value of INDX is X,copy the string starting from

the xth character.The length of the copy string is N.

IMDX

The longest constant string is 126 bytes.

error conditions:
0006 Indirect address
0091 Operand range
009B lllegal index
ASCII constant string data type format:
String is a series of characters, each character is stored as a byte.The first byte of a
string defines the length of the string, that is the number of characters.If a constant
string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("'string constant”).

Example:
NETWORK 0
MO.0 (1 SSTR_CPY
| - |
| | En
VBO ["123456"] <IN OUT|-VB100 [*234
2 —INDX
3N

Copy VBO string.Copy the string starting from the second character.The length of the
copy string is 3.The result is placed VB100.

184

6.14.4 String catenate

Input/output Operand Data type
Input VB,Constant string, LB, *VD, *LD, *AC String
ouT VB, LB, *VD, *LD, *AC String

String Catenate

STR -CAT:Add the string specified by the IN to the string

STR_CAT specified by the OUT.
The longest constant string is 126 bytes.

error conditions:
0006 Indirect address
0091 Operand range
ASCII constant string data type format:
String is a series of characters, each character is stored as a byte.The first byte of a
string defines the length of the string, that is the number of characters.If a constant
string is entered directly into the program editor or data block, the string must start
and end with double quotation marks (“'string constant”).

Example:

METWORK 0

MO0 (1 STR_CAT

| | | o |
1 | 1 P EN

abc™—IM QOUTHVB100 ["123abc

VB100 string is "123".After using the STR -CAT instruction, the VB100 string is
"123abc".

185

6.14.5 STR -FIND

Input/output Operand Data type
IN1, IN2 VB, constant string, LB, *VD, *LD, *AC string
ouT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC byte
STR-FIND STR -FIND:The instruction searches for the string IN2 in
the string IN1 .Search starts from the OUT start position.If
STR_FAID you find a string that is the same as the string IN2, the
T first character position of the string is written to the
-1 ouT- OUT.If you do not find IN2 in IN1,0UT is set to 0.The
e longest length of a single constant string is 126 bytes.The
longest comprehensive length of two constant strings is
240 bytes.

error conditions:
0006 Indirect address
0091 Operand range
009B lllegal index
ASCII constant string data type format:
String is a series of characters, each character is stored as a byte.The first byte of a
string defines the length of the string, that is the number of characters.If a constant
string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:
MO0 (1 MOVE_B
| |
{ I | =
1IN QUTHVE100 5
STR_FND
EM
VBO 71234567 —{IN1 QUTHYE100 5
56T —IMN2

186

6.14.6 Look for the first character in the string

Input/output Operand Data type
IN1, IN2 VB,constant string, LB, *VD, *LD, *AC string
ouT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC byte
Look for the first CHR -FIND: The instruction searches for the same character

characterin thestring | as the string IN2 in the string IN1.Search starts from the

OUT start position.If a match character is found, the

CHR_FND
i character position is written to OUT.If a match character is

—IN1 ouUT—
—INz2

not found, the OUT is set to O.

The longest length of a single constant string is 126

bytes.The longest comprehensive length of two constant strings is 240 bytes.

error conditions:

0006 Indirect address

0091 Operand range

009B lllegal index

ASCII constant string data type format:

String is a series of characters, each character is stored as a byte.The first byte of a
string defines the length of the string, that is the number of characters.If a constant
string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("'string constant”).

Example:
NETWORK 0
MO.0 (1 MOVE_B
| |
| | EN
1IN OUT-VE200 &
CHR_FND
EN
VBO ["123455" —IN1 OUT|-VB200 (&
VB100 "5 —IN2

187

6.15 Table
=-{Z7 Table

-----] FILL_N
----- 1] AD_T_TEL
----- {] TBL_FIND=
-----] TBL_FIND<>
----- {] TBL_FIND<
----- {] TBL_FIND>
..... g LIFo

..... 0 FIFO

6.15.1 Last in first out

Input/output Operand Data type
TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, *LD, *AC word
DATA VW, IW, QW, MW, SW, SMW, LW, AC, T, C, AQW, *VD, *LD, *AC integer

Last in first out

LIFO

—TBL DATA

error conditions:
0006 Indirect address
0091 Operand range
SM1.5 Empty list
Special memory bit:
SM1.5 Empty list

Table Format:

LIFO:Instruction moves the latest (or last) entry in the table
to the output memory address.Remove the last entry in
the table (TBL) and move the value to the location
specified by DATA.Each time the instruction is executed,the

number of entries in the table reduces 1.

VW200 The maximum number of entries
VW202 Entry count

W204 Data 0

VW206 Data 1

VW208 Data 2

188

For example:

PLC program:
METWORK 0

M0.0 LIFO

| | | |

1 1 P EN

VWY 200 —TBL DATAVW300
Data block:
Adress Drata Type Val

v | WW200 INT 4

V| WW202 INT 4

V| WW204 INT 1

V| VW208 INT 2

V| WW208 INT 3

V| YW210 INT 4
Analysis:

When the value of M0.0 is equal to 1, the last entry of the table will be deleted and the value of

the last entry of the table will be moved to “VW300”.

NETWORK 0
M0.0 [1] LIFO
| - | | o |
1 | | P EN
VW200 [4] —{TBL DATAVW 300 [4]
VW200 INT 4
Vw202 INT 3
V204 INT 1
VW206 INT 2
VW208 INT 3
VW210 INT 4

When the value of M0.0 is equal to 1 :
VW202=3
VW210 is invalid

VW300=4

189

6.15.2 FIFO

Input/output Operand Data type
TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, *LD, *AC word
DATA VW, IW, QW, MW, SW, SMW, LW, AC, T, C, AQW, *VD, *LD, *AC integer

FIFO FIFO:Remove the first entry in the table (TBL) and move

the value to the location specified by DATA.AIl other

FIFD

—TEL DATA

entries in the table move a location upward.Each time the

instruction is executed,the number of entries in the table

reduces 1.

error conditions:

0006 Indirect address

0091 Operand range

SM1.5 Empty list

Special memory bit:

SM1.5 Empty list

Table Format:

VW200 The maximum number of entries
VW202 Entry count

W204 Data 0

VW206 Data 1

VW208 Data 2

190

For example:

PLC program:
METWORK 0
M0.0 FIFO
| | | |
1 | P EN
VW 200 —TEL DATA -V 300
Data block:
Adress Data Type Value
v | V200 INT 4
v | V202 INT 4
v | V204 INT 1
v | VW 206 INT 2
v | V208 INT 3
| w210 INT 4
Analysis:

When the value of M0.0 is equal to 1, the first entry of the table will be deleted and the value of

the first entry of the table will be moved to “VW300”.

NETWORK 0
MD.0 [1] FIFO
| - | | o |
| | | P EM
VWW200 [4] <TBL DATA|-vw300 [1]
VW 200 INT 4
VWz202 INT 3
VW204 INT 2
VW206 INT 3
VW 208 INT 4
VW210 INT 4

When the value of M0.0 is equal to 1 :
VW202=3
VW210 is invalid

VW300=1

191

6.15.3 Add to table

Input/output Operand Data type
DATA VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC,constant, *VD, *LD, *AC integer
TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, , *LD *AC word
Add to table AD -T- TBL:The instruction adds the word (DATA) to the
table (TBL).The first value in the table is the maximum
AD_T_TBL length of the table .The second value is the entry count
T (EC),it specifies the number of entries in the table.Each
—DATA TBL-
time you add new data to the table,the number of entries
adds 1.Table can contain up to 100 entries, not including

the first entry and the second entry.
error conditions:

0006 Indirect address

0091 Operand range

SM1.4 Table overflow

Special memory bit:

SM1.4 Table overflow

For example:
PLC program:
METWORK 0

M0 [0] AD_T_TBL

| | | |

11} | P EN

V300 [5] —{DATA TEL-Vvw200 [10]
Data block:
Adress Data Type WValue

V| V200 INT 10

v | Vw202 INT 4

V| V204 INT 1

V| VW206 INT 2

v | V208 INT 3

v | Vw210 INT 4

192

When the value of M0.0 1s equal to 1:

The value of Vw202 + 1

The Table will have a new entry

The value of the new entry is equal to the value of VW300.

yw200 [10]

193

NETWORK 0
M0.0 [1] AD_T_TBL
|| |
L ! EN
VW30 [5)—{DATA TEL
VW200 INT 10
Vw202 INT 5
Vw204 INT 1
VV/206 INT 2
VV/208 INT 3
V210 INT 4
Vw212 INT 5

6.15.4 Memory fill

Input/output Operand Data type
IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC,constant, *VD, *LD, *AC integer
N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte
ouT VW, IW, QW, MW, SW, SMW, LW, T, C, AQW, *VD, *LD, *AC integer
Memory fill FILL-N: The input value of “IN” is written to the “OUT” N
continuous words.
s FILLN The range of N is from 1 to 255.
error conditions:
—IM ouT -
o 0006 Indirect address
0091 Operand range
Example:
METWORK 0
M0.0 (1 FILL_N
]
253N OUT|-vwi (222
2N
Status Chart
Address Data Type Value
MO0 BOOL 1
VW0 INT 999
Vw2 INT 999

194

6.15.5 Table Find

Input/output Operand Data type
TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, *LD, *AC word
PTN VW, IW, QW, MW, SW, SMW, AIW, LW, T, C, AC,constant, *VD, *LD, *AC integer
INDX VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC word
Table Find Table Find instruction:The instruction
searches the same data as “PTN” in the
I TBL_FIND= | TBL_FIND= i
N i table. “Table Find” starts form the
TLE‘ - entry specified by INDX.If a matching
™ T entry is found, the INDX points to the
=[NDX = INDX
TEL_FIND... TBL_FIND> entry in the table.To find the next
—£N —{EN
matching entry,you must add 1 to the
—TEL —{TEL _ _
—BTH I INDX before using the “Table Find”
—INEK —{INDX

instruction.If matching entry is not

found, the value of INDX is equal to the number of entries.

For example:

PLC program:

NETWORK 0

TBL_FIND=
EN

W 202—

75—

VW 100 —|

TBL
FTM
IMDX

TBL_FIND...
EN

Vi 202—

3

V102

TBL
FTM
IMDX

TBL_FIND=<
EN

V202

Wi 104—

TEL
PTM
INDX

TBL_FIND>

V202

W 106 —

195

Data block:

Adress Data Type Value
| WW200 INT 10
P VW202 INT 4
V| WW204 INT 1
| VW 206 INT 2
| VW208 INT 3
W VW210 INT 4

When the value of M0.0 is equal to 1:

NETWORK 0
M0.0 [1] TBL_FIND=
| | [o |
1 | 1 P EN
VW 202 [4] —TBL
3—{PTN
VW 100 [2] —INDX
TBL_FIND...

EM

Vw202 [4] —{TBEL

3—PTN
VW 102 [0] —{INDX
TBL_FIND<
EM
Vw202 [4]{TBL
3—PTN
VW 104 [0] —{INDX
TBL_FIND=
EM
Vw202 [4]{TBL
3—PTN
VW 106 [3]—{INDX

The table format of the “Table-Find” begins with the entry count.It doesn’t have the

“maximum number of entries”:

VW202 Entry Count

VW204 Data 0O

VW206 Datal

VW208 Data?2

VW210 Data3

196

6.16 Timer
—D Timers

ﬂ CAL_TTT

ME

6.16.1 Switch on delay timer

Input/output Operand

TXXX
IN (LAD)
IN (FBD)

PT

Data type
constant(TO -T255) word
Enable bit Boolean
l,Q,M,SM, T,C,V,S, LEnable bit Boolean

VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC,constant, *VD, *LD, *AC integer

Switch on delay timer

I TOMN

TON:When the value of the input “IN” is equal to 1,

timer starts time.Timer current value of Txxx is the
current time (a multiple of the time base).When the
current value of the timer is equal to the preset time (PT),
the value of the timer bit is 1.When the value of the

input “IN" is equal to 0, timer current value is cleared.

TON, TONR and TOF timers have three kinds of resolutions.Each current

value 1s a multiple of the time base.For example, the number 50 in the

10 millisecond timer is 500 milliseconds.

Timer range:

Timer number Time base (ms) | Time range (s)
TO 1 65.535
T1~T4 10 655.35
T5~T31 100 6553.5
T32 1 65.535
T33~T36 10 655.35
T37~T63 100 6553.5
T64 1 65.535
T65~T68 10 655.35
T69~T95 100 6553.5
T96 1 65.535
T97~T100 10 655.35

197

T101~T127 100 6553.5

Attention:
1.The value of each timer TXXX is different.
2.The resolution of the timer depends on the time base.For example, the error range

of the 10 millisecond timer is 10 milliseconds.

Example:
Md.0 (1 T101 [163
| |
I-I M TON
00—PT
T102 (163
my TONR
00—PT
T103 [0
M TOF
00—PT
METWORK 3
Ti01 (1 Q0.0 1
| | {
| | ()
Ti02 |1 Qo011
| | [
1| (I
T103 [1 Q0.2 1
| | {
| | ()

198

6.16.2 TONR

Input/output Operand Data type

TXXX Constant(TO—T255) word

IN (LAD) Enable bit Boolean

IN (FBD) ,Q, M, SM, T, C,V, S, LEnable bit Boolean

PT VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC,constant, *VD, *LD, *AC Integer
TONR TONR:When the value of the input “IN” is equal to 1,

timer starts time.Timer current value of Txxx is the current

time (a multiple of the time base).When the current value

—{y TONR

of the timer is equal to the preset time (PT), the value of

the timer bit is 1.When the value of the input “IN” is equal

to 0, If the current value of the timer is less than the

preset value, timer current value is retained.Otherwise, the current value of the
timer is cleared.

Notes:

You can use TONR to accumulate multiple time intervals.

You can use the "recovery" (R) instruction to recover any timer.

You can only use the "recovery" instruction to recovery the TONR timer.

Example:
METWORK O
Moo 1 T101 [133
I-I m TONR
100—PT

T101 1 Q0.0 1

| [r

L {

MD.1 0 T101 1

| [r

{1 { R)

199

6.16.3 Disconnect delay timer

Input/output Operand Data type

TXXX constant(TO—T255) word

IN (LAD) Enable bit Boolean

IN (FBD) ,Q, M, SM, T, C,V, S, LEnable bit Boolean

PT VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC,constant, *VD, *LD, *AC Integer
TOF TOF: When the input is closed, the output will be closed

for a period of time.When the value of IN is 1, the bit of

the timer is 1 Immediately and timer current value is set to

— TOF
:: 0.When the value of IN is 0, the timer starts time.When the
current value is equal to the preset value,the bit of the
timer is 0.
Notes:

The value of each timer TXXX is different.

You can use the "recovery" (R) instruction to recover TOF timer.

Example:
NETWORK 0

M0.0 [1] T110 [0]

1 | TOF
| | i

T110 [1] Q0.0 [1]

T (-

200

6.16.4 Start time interval

Input/output Operand Data type

ouT vD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double word

Start time interval

Reads the current value of the built-in 1 ms counter

BGN_TTIME and stores it in the OUT.
—IM
QUTH
Example:
METWORK 0
MO0 [1] BGN_ITIME
| | | |
| | L [N

OUT|-VDO 753665813

CAL_ITIME
N

VDO [75356813] —{IN OUT}-vD4 [7152]

The value of VD4 is the conduction time of MO.0O

201

6.16.5 Calculation interval time

Input/output Operand Data type
IN VD, ID, QD, MD, SMD, SD, LD, HC, AC, *VD, *LD, *AC Double word
ouT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double word

Calculation interval time
Calculates the time difference between the current time

and the time provided by the IN, and stores the time

CAL_ITIME . .
—{m difference in the OUT.
—{IM QUT|—
Example:
MNETWORK 0
M0.0 [1] BGN_ITIME
| | | |
| | 1 P i
OUTVD0 [75366513]
CAL_ITIME
M
VDO [75366813]—IN QUT VD4 [7158]

The value of VD4 is the conduction time of MO.0O

202

6.17 Pulse train output
=1-{] Pulse Train Qutput (PTO)

_D PLSY
‘|:| WM

6.17.1 Pulse output

Input/output Operand Data type
F ID, QD, AID, AQD, MD, VD, HC, SMD, LD, *MD, *VD, *LD Double integer
N ID, QD, AID, AQD, MD, VD, HC, SMD, LD, *MD, *VD, *LD Double integer

ouT QXX Bit

Pulse output

PLSY:When the value of the enable bit is 1,Instruction issues N

PLSY
ik pulses.The pulse frequency is F.

—F Qu.xp—

PLSY instructions:

1.The frequency range of F is 10 ~ 40K (Hz).Different models have different
frequency ranges.Please set the frequency according to the specific model.Frequency
F can be changed in the process of pulse transmission, the sending pulse frequency is
also changed.

2.The range of N is 0 ~ 2147483647.1f N is 0, the number of pulses is ignored.When n
is equal to 0 and the enable bit is 1, the PLSY instruction will send pulses ceaselessly.
When the pulse is sending, changing the value of N does not work.N changes will
be in effect after the next pulse.

3.If the value of the enable bit is 0, the pulse will stop sending.When the enable bit is
changed from 0 to 1, PLSY instruction sends new pulses and ignores the interrupted
pulses before.

4.The duty ratio of pulse transmission is 50%0N, 50%O0FF.The transmission of
the pulse is completely processed by the hardware interrupt, which is not

affected by the scan period.

203

For example:

METWORK 0

Ma.0 PLSY

10— Qx.x|-00.6

Attention:
Output point must be high speed output point.

For different PLC,the addresses of high speed output points may be different.

204

6.17.2 Pulse width modulation

Input/output Operand Data type
% IW, QW, AIW, AQW, MW, VW, T, C, SMW, LW, *MD, *VD, *LD Double word
T IW, QW, AIW, AQW, MW, VW, T, C, SMW, LW, *MD, *VD, *LD Double word
ouT Q Bit

Pulse width modulation Pulse width modulation (PWM) instruction

initializes the PWM hardware and sends high

N PWH speed pulses.
The i1nput value of "%" =conduction time/period.
— % Qx.x—
—r The input value of "T" is the period of the pulse

PWM description:

1.The unit of T is 1ms.

21T the input value of "%" is O ,then the instruction does not output
the pulse.If the input value of "%" is equal to 100, the value of output
pulse is always 1.

3.When the pulse is sending, you can change the value of “%” and period
of the pulse . Then the value of “%” and period of pulse will change.
4.1T the value of enable bit is 0,pulse sending will stop.When the enable
bit is changed from O to 1, PWM instruction restarts sending pulse.
For example:

METWORK 0

a0—{%% Qx.x-00.6

(53]
|
—

The pulse period 1s 500 ms, the conduction time is 300 ms.
Attention:
Output point must be high speed output point.

For different PLC,the addresses of high speed output points may be different.

205

6.18 Subroutine

—{:| Subroutine
‘..qIF SBR_O (SBRO)

6.18.1 Using subroutine

Subroutine is used for program partitioning.\When the main program calls subroutine
and performs the subroutine,subroutine executes all instructions to the end.Then,
the system returns to the main program.

Subroutine is used for program partitioning.It helps to read and manage programs. It
also helps to debug and maintain programs.You can use PLC more effectively by using
subroutine.Because all of the subroutine blocks are not scanned when they are not
called.

If the subroutine only references parameters and local memory,then the subroutine
can be moved.In order to move the subroutine,you can not use any global variables /
symbols (I, Q, M, SM, Al, AQ, V, T, C, S, AC absolute address).If the subroutine does
not call parameters (IN, OUT, or IN_OUT) or only uses local variables,You can export
the subroutine and import it into another project.

Conditions of using subroutine:

1.Create a subroutine

2.Define parameters in the local variable table.

3.Call subroutine from the appropriate POU (from the main program or another
subroutine)

Using subroutine does not save or restore the accumulator.

206

6.18.2 Using parameters to call subroutine

Subroutine may contain the transfer parameters.The parameter is defined in the local
variable table of the subroutine.Parameters must have a symbol name (up to 23

characters), a variable type, and a data type.Each subroutine can be set up to 16

IN/OUT parameters.
Local variable table has 4 types of variables.They are IN, IN-OUT, OUT and TEMP.
Symbol Var Type Data Ty... Comment
¥ LO.0 55 IN BOOL
IN BOOL
IN_ouT BOOL
IN_ouT BOOL
IN_ouT BOOL
auT BOOL
TEMP BOOL

Parameter type and description

IN Parameters are transferred to the subroutine.If the parameter is a
direct address (e.g. VB10),the specified location value is transferred to the
subroutine.If the parameter is an indirect address (such as *AC1),the specified
location value is transferred to the subroutine.If the parameter is the data constant
(16#1234) or address (&VB100), constants or addresses are transferred to the
subroutine.

IN_OUT The specified location value is transferred to the subroutine.The
result of subroutine operation is transferred to the specified same location .This
parameter does not allow to use constants (such as 16#1234) and addresses
(e.9.&VB100).

ouT The result of subroutine operation is transferred to the specified
location.Constants (such as 16#1234) and addresses (e.g. &VB100) are not allowed to
be used as output.

TEMP Any local memory which is not used as a transfer parameter can’t be

used for temporary storage in subroutine.

Parameter data type [llustration
Boolean It is used for unit input and output.
Byte, word, double word Input or output parameters without symbols.

207

Integer, double integer Input or output parameters with symbols.

Real number It identifies single precision floating point values.

String This data type is used as a four byte pointer to the string.

Enable bit Boolean enable bit can be used only for bit.It can be used as
input.

6.18.3 How to set up a subroutine

The following methods can be used to establish a subroutine:

1.Project manager—program block—Right click program block—Insert—subroutine
2.Project manager—program block—SBR-0—Right click SBR-0—Insert—subroutine
You can use the local variable table to define the parameters of the subroutine.
Notes:

1.Please remember that each POU in the program has an independent local variable
table.In the A subroutine, you can only use the A local variable table to define
variables.

2.Each subroutine can be set up to 16 IN/OUT parameters.If the number of
parameters is greater than 16, the program will generate errors.

3.You can write a subroutine in the program edit window.

4.Click on the label of POU that you want to edit.SO you can edit the POU in the
program edit window.

Editor inserts POU termination instruction automatically. C(END for main, RET for SBR,

RETI for INT).

208

6.18.4 How to call a subroutine

You can call a subroutine from the main program, another subroutine or
an interrupt routine;You can’ t call the subroutine from the subroutine
itself.

In LAD, the subroutine generates a block instruction.You can call the
block instruction to call the subroutine.

Steps to call a subroutine:

1. In program edit window,place the cursor on the position where you want
to place the subroutine.

2. Instructions—Subroutine,then select the subroutine that you

need.Double click on it.

209

Example: Four arithmetic operation
Main program:

METWORK O

SBR_D

VD0 —
VD4

valuel Add
value? subtract
mutiply

divide

—VD3
—vDi12
—VD 14

—VD 16

210

Subroutine:

& Program Editor x]
Symbol Var Type Data Type Comment
v LDD valuel IM DINT
v LD4 value2 M DIMNT
IM BOOL
IM_OUT BOOL
" LD3 Add ouT DINT
¥ D12 | subtract ouT DINT
v LDI16 | multiply ouT DINT
¥ LD20 divide ouT DINT *
ouT BOOL
TEMP BOOL
SM0.0 ADD_D
| |
1 BN
LDO—IM1 QUTHLDE
LD4—IMN2
SUB_D
EM
LDO—IM1 OUT—LD12
LD4—IM2
MUL_D
EM
LDO—IM1 OUTHLD1s
LD4—IMN2
DIV D
EM
LDO—IM1 QUTHLD20
LD4—IM2

[T TH T mam @vTo) INT_1(INT1) | SBR_0 (SBRD), (SBR_1 (SBR1)

211

7.PLC storage area

7.1 Storage area types and properties

Region | lllustration | Bit Byte | Word Double | Retain | Force
Word
| Discrete Read / Read/ | Read/ Read / NO YES
input and | write write | write write
image
register
Q Discrete Read / Read/ | Read/ Read / NO YES
output and | write write | write write
image
register
M Internal Read / Read/ | Read/ Read / YES YES
memory bit | write write | write write
SM Special Read / Read/ | Read/ Read / NO NO
memory bit | write write | write write
(SMO -
SM29
Read-only)
v Variable Read / Read/ | Read/ Read / YES YES
memory write write | write write
T Timer Read / NO Read / NO T T bit
current value | write (T write (T current | NO
and timer bit | bit) Current value
value) YES
C Counter Read / NO Read / NO C C bit
current value | write (C write (C current | NO
and counter | bit) current value
bit value) YES
HC Current NO NO NO read-only | NO NO
value of high
speed
counter
Al Analog input | NO NO | Read-only | NO NO YES
AQ Analog NO NO |writeonly | NO NO YES
output
AC Accumulator | N Read/ | Read/ Read / NO NO
register write | write write
L Local Read / Read/ | Read/ Read / NO NO
variable write write | write write
memory

212

S SCR Read / Read/ | Read/ Read / NO NO
write write | write write

7.2 Direct and indirect addressing

When you write the program, you can use the three ways to address instruction:
1.Direct addressing

2.Symbol addressing

3.indirect addressing

Direct addressing

PLC can directly specify the memory area, size, and location;

In order to read/write a bit in the memory area, you need to specify the address. The

address Includes memory area identifier, byte address, a period and number.

Example:
I3 .4 Frocess-image Input () Memaory Area
|_ Eit of byte, or hit number: Cfrd43 0210
bit4 of 8 {0 to 73
Period separates the Byte 0
byte address from the bit Eyte 1
number Eyte 2
L Byte address: byte 3 (the Biyte 3
fourth byte) Eyte 4
Area identifier Byte 3

Specifying byte. word and double word addresses are similar to specifying bit
address.

Example:

213

vV B 100 v w100 ¥ D100
L— Byte adress L— Byt addres L— Byte address
Bcess 1o & byts size Bicess 1o & word size Bccess 1o & double word size
drea identifier drea identifier frea identifier

SR LSB
VEIOD |7 veioD 0

M5B = most sighificant bit
LSE = lesst significant bit
MWost significant byte Least significant byte
MSB LSE
VW00 {15 yEioD |7 wEil o
Most significant byte Least sighificant byte
MSE LSE

YDI0O |3 VEIOD #[m vEIO1 %1 B2 8|7 VEIO3 0|

Symbolic addressing
Symbol addressing consists of letters, numbers and characters.
You can set the symbol of address by the following steps:

— Variable Symbol
P USR_0 (USRO)
s USR_1{USR1)

Symbol Adress Data Ty... Comment
v | start 10.0 BOOL start
BOOL
BOOL
BOOL

You can enter “start” as the address of 10.0
NETWORK 0

start {10.0] Q0.0

| || {)

Indirect addressing

Indirect addressing uses pointer to access the data of memory. Pointer is a double
word.It contains the address of another memory location. Only V memory location, L
memory location or register accumulator (AC1, AC2, AC3) can be used as pointers.

PLC allows the pointer to access the following memory area: I. Q. V. M, S, T. C.

T and C can only use the current value.

214

Pointer consists of memory location and symbol "&”.

To specify the operand be a pointer , you should input an asterisk (*) in front of the

operand.

Example:The values stored in the VB200 and VB201 are moved to ACO.

itk
Y200
il
yaiz
yan3
yan4

AC1
address of YW200

1¢

34

5 ALY

T 1234

1

-

— MOVD &YB200, ACT

Creates the pointer b muvin& the adiress of YB200 (address of
the iitial byte for V2000 to A1,

— MOYW *4C1, ACH

Mawes the vard value pointed to by ACT to ACD,

As shown in the figure below, you can change the pointer value.Because the pointer

is a 32 bit value, you should use the double word instruction to modify the pointer

— MOWD &VB200, ACH

Creates the pointer by moving the address of YE200
taddress of WW200%s initial byted to 821,

MOV W *ACT ACH
E&E&S the weard value pointed to by ACT GMW2000 to

— +0 +2, A
Adds 2 to the accumulator to point to the nest word location,

MOWYW *ACT, ACD
Moves the word value painted to by ACT W2020 to ACO,

value.
¥139 AC
| address of YW200 |4—
yeoo [12 0
van 1 . |
V02 56 | | 1234 |
w203 78
¥139 AL
address of YW202 }-l—
w200 12 |m::u
¥201 94 | | 5678 |
Y202 56 -
Y203 78 H
Prompt:

If you use the pointer to execute the byte operation,the minimum pointer interval is

1.

If you use the pointer to execute the word operation,the minimum pointer interval is

2.

If you use the pointer to execute the double word operation,the minimum pointer

215

interval is 4.

If the value of the pointer is greater than the maximum value of the V memaory,
program will generate errors.

The current value of the timer and counter is 16 bits,so the minimum pointer interval
is 2.

7.3 Bit, byte, word and double word access

Bit access

IT you want to access a bit, you need to specify the address of the
bit.Address contains region identifier and byte number.Zero is the first
address of all data areas.The decimal point is used to separate the number
of bytes and the number of bits. The range of the number of the bits is
0~7. For example: MO.0

Byte, word and double word access

IT you want to access byte, word or double word, you need to specify the
address.Address contains a region identifier, a letter and an address
number.

For example:

VB100 Access V memory address byte 100

VW100 Access V memory address bytes 100 and 101

VD100 Access V memory address bytes 100, 101, 102, and 103

7.4 Memory address range

Bit Byte Word Double Word
I 10.0~131.7 IB IBO~IB31 W IWO0~IW3 ID IDO~ID28
0

Q Q0.0~Q31 0B QB0-~QB3 QW | QW0-QW QD QD0~QD

T 1 30 28

M MO0.0~31. MB MBO~MB MW MWO0~M MD MDO~MD

216

7 31 W30 28
S S0.0~S31. SB SB0~SB31 Sw SWO0~SW SD SD0~SD2
7 30 8
SM SM0.0~S SMB SMBO~SM SMW SMWO0-~S SMD SMDO0-~S
M551.7 B551 MW550 MD548
T TO~T255 T TO~T255
C C0~C255 C C0~C255
\ V0.0~Vv81 VB VBO~VB8 VW VWO~VW VD VDO~VD8
91.7 191 8190 188
L L0.0~L63. LB LBO~LB63 LW LWO~LW6 LD LDO~LD6
7 2 0
AC AC0~AC3 AC ACO~AC3 AC ACO~AC3
HC HCO~HC1
5
7.5 Data type
Data Type Data width Range
BOOL 1 0~1
BYTE 8 16#00~16#FF
WORD 16 16#0000~16#FFFF
DWORD 32 16#00000000~16#FFFFFFFF
SINT 8 -128~127
INT 16 -32768~32767

217

DINT 32 -2147483648~2147483647

USINT 8 0~255
UINT 16 0~65535
UDINT 32 0~4294967295

7.6 Constant

Unsigned integer range Signed integer range
Data size: Decimal digit: Hexadecimal digit: Decimal digit: Hexadecimal digit:
B (byte) 0~255 O0~FF -128 ~+127 80~7F
W (word) 0~65535 O~FFFF -32768~+32767 8000~7FFF
D (double word)0~4294967295 O~FFFF FFFF -2147483648 8000 0000~

~+2147483647 TFFF FFFF

Data size: Decimal numbers (positive) Decimal number (negative)
D (double word) +1.175495E-38~+3.402823E+38 -1.175495E-38~-3.402823E+38

218

8.Assignment and function of SM special storage area

SMBO
Always_0On SMO.0 Always ON
First_Scan_On SMO.1 ON for the first scan cycle only
Clock_60s SM0.4 30 seconds OFF,30 seconds ON
Clock_1s SMO.5 0.5 second OFF,0.5 second ON
SMB1
Result 0 SML.0 Settol by;the execution of certain instructions when
- the operation result = 0
1 . of ini i fl
overflow_I1legal SML.1 Set_to by exec _o certain instructions on overflow
or illegal numeric value.
Neg Result ML 2 Set to 1 when a math operation produces a negative
result
Divide_By O SM1.3 Set to 1 when an attempt is made to divide by zero
1 wh he A Table i i
Table_Overflow SML.4 Set to _w en the Add to Table instruction attempts
to overfill the table
Table Empty SML.5 Set to 1 when a LIFO or FIFO instruction attempts to
read from an empty table
Not BCD SUL.6 Set to 1 when_an attempt is made to convert a non-BCD
- value to a binary value
Not Hex ML 7 Set t? 1 when a? ASCII value cannot be converted to
- a valid hexadecimal value
The PLC variables addresses of LCD keys:
F1 - SM191.0
F2 - SM191.1
F3 - SM191.2
F4 - SM191.3
ESC - SM190.0
OK - SM190.1
UP - SM190.2
DOWN - SM190.3
LEFT - SM190.4
RIGHT — SM190.5

When the value of SM192.0 is equal to 1,LCD will be bright.
When the value of SM192.0 is equal to 0,LCD will be dark.

SMW22-SMW26 Scan time

SmMw22
SMw24
SMW26

Scan time of the last scan.

Minimum scan time

Maximum scan time

219

9.Easy ladder communication

9.1 PR series PLC basic introduction of network
communication

PR series PLC is designed to solve your communications and networking needs.lIt
supports both simple networks and complex networks .Easy ladder makes it simple
to set up and configure your network .

Master slave network definition

PR series PLC supports master slave network.It can be used as the master station or
the slave station in the network.Easy ladder is always used as the master station.
Master station:The master station can send a request to another device in the
network.The master station can also respond to requests from other master stations
in the network.

Slave station:The device which is configured to be the slave station can only respond
to requests from a master station;Slave station will not take the initiative to issue a
request.

The concept of baud rate and network address

The speed of transmission of data in the network is called the baud rate.Units are
kbaud and Mbaud.For example, 19.2 kbaud indicates that 19200 bits are transmitted
per second.

Each device must be the same baud rate in the network.So the communication speed
of the network is decided by the minimum baud rate of equipment.

The range of PR series PLC baud rate is 1200 bps~115200 bps.The default value is
9600bps.

Network address is a unique number that you specify for each device on the network.
Network address ensures that data is delivered to the correct device.The range of PR
series PLC network addresses is 0~255.If PLC has two ports, each port can have a
network address.

Set the baud rate and network address of EASY Ladder

Open the communication in project management; ~# Cemmunication

220

Communication

X

Serial Port | Modbus TCP/IP | CAN Kvaser | CANpro | CANalyst-1 |

Station: [U

x)

Default

Port: | UUSB-SERIAL CH340 (COM1)

Bus Parameters

Baud Rate: |2600 bps

)

Parity: [NDNE

)

StopEit: | 1Bt

)

[

Ok

J |

Cancel]

You can set the station number, port, baud rate, parity and stop bit of easy ladder.The

default station number is 0.The default baud rate is 9600 bps.

Set the baud rate and network address of PR series PLC

Open system block in project management 4 System Block

System Block ||
| Retentive Ranges | Interrupt Time | Force Table
RS232/R5485 | RS232/RS485 CAN | Password
Defaults
Part 0 Port 1
Protocol: IMudbus v] [Mndbus "]
Station number: 1 .1. {range 0... 255)
Baudrate: |ggo0bps v | |gs00bps +|
Data bits: [g RTU) v] [s{m‘u} v]
Parity: | NONE - | [none -
Stopbits: | 18t v| 18t -
Response timeout (100ms) 10 10 {range 1... 255)
Interval frame delay (B) 10 10 {range 1... 253)
Configuration parameters must be downloaded before they take effect
[ok || caneel |

You can set the station number, baud rate, data bits, parity bit and stop bit of PLC.

221

Attention:Only when Easy Ladder software station number is equal to 0

or PLC station number,you can download the program to PLC.
9.2 PR series PLC communication

PR series PLC support free port communication, MODBUS communication and CAN
communication.

Free port communication:

Free port communication is a half duplex communication based on RS-485
communication.Users can make their own communication protocol in free port
communication.Third party devices mostly support RS-485 serial communication .
The core of the free port communication are receiving and sending instructions.
RS-485 communication can not receive and send data at the same time.The RS-485
communication format includes a start bit, 7 or 8 bit characters, a parity bit,
and a stop bit.

Free port communication baud rate can be set to 1200, 2400, 4800, 9600, 19200,
38400, 57600 or 115200.Devices that meet the above conditions can communicate
with PLC.Free port mode has great flexibility.

Free port instructions:

UFP_RCV
UFP_RCV UFP_RCV :Receive data instruction
—EN
I PORT: Communication port.
:i;fT I TBL: Configuration table, If the input is MB200.
—REY MB200 is the configuration byte:

(Instruction output) M200.0 Communication
preparation

(Instruction output) M200.1 Communication
completion

(Instruction output) M200.2 Communication error

(Instruction input) M200.3 Send CRC check

222

UFP_XMT

UFP_XMT
—EN

FORT

CInstruction input) M200.4 Send CRC check
(Instruction input) M200.5 Receive CRC check
(Instruction input) M200.6 Receive CRC check
(Instruction output)MB201 Error number: Oindicates
no error.
I RCV: receive data,If the input is MB400:
(Instruction input) MW400: Receive data FIFO buffer
size (byte unit)
(Instruction output) MW402:The size of the received
data (in bytes)

(Instruction output) MB404 ~ --- receive data.

UFP_XMT: Send data instruction
I PORT Communication port.
I TBL: Configuration table, ITf the input is MB200.
MB200 1s the configuration byte:
(Instruction output) M200.0 Communication
preparation
(Instruction output) M200.1 Communication
completion
(Instruction output) M200.2 Communication error
(Instruction input) M200.3 Send CRC check
(Instruction input) M200.4 Send CRC check
(Instruction input) M200.5 Receive CRC check
(Instruction input) M200.6 Receive CRC check
(Instruction output)MB201 Error number: Oindicates

no error.

223

UFP_QAR

UFP_QAR

—FORT
—TBL
—EMT
—RCY

I XMT Send data FIFO,If the input is MB400:
(Instruction input) MW400 Sending data FIFO buffer
size (byte unit)
CInstruction input) MW402 Sending data size (byte)
(Instruction input) MB404 ~ --- Send data.

UFP_QAR: Sending and receiving data instruction
I PORT Communication port.
I TBL: Configuration table, If the input is MB200.
MB200 is the configuration byte:
(Instruction output) M200.0 Communication
preparation
(Instruction output) M200.1 Communication
completion
(Instruction output) M200.2 Communication error
(Instruction input) M200.3 Send CRC check
CInstruction input) M200.4 Send CRC check
(Instruction input) M200.5 Receive CRC check
(Instruction input) M200.6 Receive CRC check
(Instruction output) MB201 Error number: Oindicates
no error.
I XMT :Send data FIFO,If the input is MB300:
(Instruction input) MW300 Sending data FIFO buffer
size (byte unit)
CInstruction input) MW302 Sending data size (byte)
(Instruction input) MB304 ~ --- Send data.

224

I RCV receive data FIFO,If the input is MB400:

(Instruction input) MW400 Receive data FIFO buffer
size (byte unit)

(Instruction output) MW402 The size of the received
data (byte unit)

(Instruction output) MB404 ~ --- Receive data.

UFP_RCV. UFP_XMT. UFP_QAR error numbers:
I 1 Port doesn’ t exist
I 2 Port isn’ t enabled
I 3 Communication task queue is full
I 4 Table error
I 5 Sent data error
I 6 Timeout
I 7 Received data error
I 8 Receive data check error
The use of free port communication instructions will be illustrated with

examples in the additional chapter.

225

MODBUS communication protocol

MODBUS protocol is a common language used in electronic controllers.Different
devices can conmunicate with each other by using the MODBUS communication protocol .
It has become a general industrial standard.You can use it to connect different
devices.

This protocol defines a message structure, no matter what network they use to
communicate. It describes the process of controller requesting to access other
devices. It has formulated message domain structure and the common format of the
content.

MODBUS network protocol determines that each controller should know i1ts address.
It identifies the messages sent from different addresses and decides what action
to take.The controller generates feedback information, the format of the
information is the information format of MODBUS. It is issued through the MODBUS
protocol .

MODBUS address usually contains data type and offset.MODBUS address contains a
total of 5 characters.The first character represents the data type and the other
four characters represent the correct values in the data type.

MODBUS addressing:

OXXXX are discrete outputs

IXXXX are discrete inputs

3XXXX are analog inputs

4AXXXX are hold registers

You can use “MODBUS address query” to query the MODBUS address of the variable,
Steps are as follows:

Menu bar—PLC—MODBUS address query

226

MODBUS Address Query =i x|

B: & 2 34 5 b A8 2 10011 1313 I4: 015

LI I I e e
I O O O O
LI I I e e
T

For example:Query the MODBUS address of Q0.0 :
MODBUS Address Query =] e | |-

BOOL * | q0.0 Reference
D1 2 3 4 5 6 F 8 9 1011 1> 135 14 15

oxo |1
ox:t6 [[I LI I e
o3z [IO O]
eesd [IO

MODBUS instructions:

UMBO3

UMB_03 Read more than one hold registers

—EN I EN: enable or not enable

1 TBL:Configuration table,If the input is MB200:
MB200 is the configuration word

PORT LDAT

—{TBL

ez (Instruction Output) M200.0 Communications have been
—ADDR queued

—CNT (Instruction Output) M200.1 Communication completion

(Instruction Output) M200.2 Communication error

(Instruction Output) MB201 is error number.0 indicates no
error.

I SLA: MODBUS slave address

I ADDR: The offset of hold register (The offset of 4X)
I CNT: Number of hold register
1

LDAT: Store the data which was written from slave station

227

UMBO04

UMB_04
—EN

PORT LDAT
—TBEL

—5LA

ADDR

—CHT

UMBO06

UMB_06

PORT

SLA
ADDR.

LDAT

Read the input register
I EN: enable or not enable
I TBL:Configuration table, If the input is MB200:
MB200 is the configuration word
(Instruction Output) M200.0 Communications have been
queued
(Instruction Output) M200.1 Communication completion
(Instruction Output) M200.2 Communication error
(Instruction Output) MB201 is error number.0 indicates no
error.
I SLA: MODBUS slave address
I ADDR:The offset of input register. (The offset of 3x)
I CNT: Number of input registers.
I LDAT: Store the data which was written from slave station

Write a single hold register
I EN: enable or not enable
I TBL:Configuration table,If the input is MB200:
MB200 is the configuration word
(Instruction Output) M200.0 Communications have been
queued
(Instruction Output) M200.1 Communication completion
(Instruction Output) M200.2 Communication error
(Instruction Output) MB201 is error number.0 indicates no
error.
I SLA: MODBUS slave address
I ADDR: The offset of hold register (The offset of 4X)
I LDAT: Store the data which will be written to the slave
station.

228

UMB16

UMB_16 Write more than one hold registers

—|EN I EN: enable or not enable
I TBL:Configuration table, If the input is MB200:

:i;ﬁT MB200 is the configuration word
g (Instruction Output) M200.0 Communications have been queued
—laooR (Instruction Output) M200.1 Communication completion
—leNT (Instruction Output) M200.2 Communication error
—LDAT (Instruction Output) MB201 is error number.0 indicates no

error.

I SLA: MODBUS slave address

I ADDR: The offset of hold register (The offset of 4X)

I CNT: Number of hold register

LDAT: Store the data which will be written to the slave station.

The use of MODBUS communication instructions will be illustrated with

examples in the additional chapter.

CAN communication

CAN communication is not stable at present.Suggest you choose other means of
communication.

The use of CAN communication instructions will be illustrated with

examples in the additional chapter.

229

9.3 Optimize network performance

The following factors will affect the performance of the network (The baud
rate and the master station produce the greatest impact to the performance
of the network):

Baud rate: It determines the speed of network communication.

Number of master stations on the network:To enhance network
performance,you can reduce the number of main stations on the network.Each
station on the network will increase the additional requirements of the
network.

Select master station and slave station addresses:The master station
address should be continuous.When there is an spacing address between the
master stations, the master station will check the spacing address
ceaselessly and see i1f there is another master station waiting to be on
line.So the master station spacing address will increase the additional
requirements of the network.You can set the slave address to any value.But
slave station address can not be placed between the master station

addresses.Or it will increase the additional requirements of the network.

230

10.Additional chapter

10.1 How to switch PLC mode
Ladder diagram—FBD

1_Ensure that there is no power supply to the PLC.

2.Press ESC key and UP key,Keep pressing.

3.Power supply to PLC.Keep pressing until the following picture

appears.

4 .Release the hand, press the OK key
FBD—Ladder diagram

Repeat the above steps.

231

10.2 Value range of analog quantity:
0~10v — 0~1000

0~20ma —0~1000

4~20ma —0~1000

-50°C~200C—-500~2000

When you use the PT100 module, The value range of the analog quantity is

-500~2000. It corresponds to the temperature that is -50°C~200°C.

10.3 Extension module address

You can use the dial switch to set the address.The address of each

extension module can not be the same.

Digital quantity input extension address table:

Extension |1 2 3 4 5 6 7 8 9 10 |11 (12 |13 |14 |15 |16
Address

Start 12. |13, |14 |15 [16. [17, [18. [19. | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117
Address 0 0 0 0 0 0 0 0 o|.0 .0 |0 |.0 |.0 .0 .0

Digital quantity output extension address table:

Extension |1 2 3 4 5 6 7 8 9 10 |11 (12 |13 |14 |15 |16
Address

Start Q2. | Q3. [Q4. | Q5. | Q6. | Q7. | Q8. [Q9. [Q10 | Q11 | Q12 | Q13 | Q14 | Q15 |Ql6 | Q17
Address 0 0 0 0 0 0 0 0 o |.0 |.0 |.0 |.0 |.0 .0 .0

232

Analog quantity input extension address table:

Extension |1 2 3 4 5 6 7 8 9 10 |11 (12 |13 |14 |15 |16
Address

Start AW | AIW | ATW | AIW | ATW | AIW | ATW | AW | ATW | ATW | AIW | ATW | AIW | ATW | AIW | ATW
Address 20 |30 |40 |50 (60 |70 |80 |90 |[100 | 110 |120 |130 |140 |150 |160 |170

Analog quantity output extension address table:

Extension | 1 2 3 4 5 6 7 8 9 10 |11 (12 |13 |14 |15 |16
Address

Start AQW | AQW [AQW | AQW | AQW | AQW | AQW | AQW | AQW | AQW | AQW | AQW | AQW | AQW | AQW | AQW
Address 20 |30 |40 |50 |60 |70 |80 |90 |100 | 110 |120 |130 |140 |150 | 160 |170

10.4 PLC host address range

Digital input: 10.0~11.7

Digital output: Q0.0~Q1.7

Analog

input: AIWO~AIW18

Analog output: AQWO~AQW18

10.5 Formula

Digital quantity extension addressing formula:

Digital input Start Address=l (Extension Address+1) .0

Digital output Start Address=Q (Extension Address+1) .0

Analog quantity extension addressing formula:

233

Analog input Start Address=AIW (Extension Address x10+10)

Analog output Start Address=AQW (Extension Address x10+10)

Up to 16 extension modules can be connected.

10.6 Set extension module address with a dial switch

The address of extension module = The value of dial switch + 1
Dial switch Value
1 1

2 — 2

3 — 4

4 — 8

The value of dial switch The address of

1 2 3 4 extension module
OFF OFF OFF OFF 1

ON OFF OFF OFF 2

OFF ON OFF OFF 3

OFF OFF ON OFF 5

OFF OFF OFF ON 9

ON ON OFF OFF 4

ON OFF ON OFF 6

ON OFF OFF ON 10

OFF ON OFF ON 11

OFF OFF ON ON 13

OFF ON ON OFF 7

ON ON ON OFF 8

234

ON ON OFF ON 12
ON OFF ON ON 14
OFF ON ON ON 15
ON ON ON ON 16

10.7 Additional instructions

10.7.1 LCD related instructions

LCD_KEY

—EM

MODIFY
—ENTER
—|UP
DOVIN
—LEFT
RIGHT

LCD_KEY

LCD_PAGE

—EN

MASK
MO,

LCD_PAGE

LCD_KEY binds LCD keys and PLC variables.

EN: Enable

MODIFY: Modifies the corresponding variables.
ENTER: Confirms the corresponding variables.
UP: The corresponding variable of UP key.
DOWN:The corresponding variable of DOWN key.
LEFT: The corresponding variable of LEFT key.

RIGHT:The corresponding variable of RIGHT key.

LCD_PAGE instruction binds the LCD display page.

I EN:Enable

I MASK: The current page group mask, generally 1.

INDX : Currently displayed page number.you can

modify the page number,the LCD will display the

page.

235

Supplementary explanation:MASK input is a byte.Take VBO as an example:

VBO

7 6 5 4 3 2 1 0

When O bit is equal to 1, LCD will display 0 group.
When 1 bit is equal to 1, LCD will display 1 group.
When 2 bit is equal to 1, LCD will display 2 group.

When 7 bit is equal to 1, LCD will display 7 group.

LCD_EDIT
_ENLCD—E““ LCD_EDIT: Binds the PLC variable to the edit state of
—untr the LCD.

—{auTo

—[DEPTH I EN: Enable

—LOaP

j“"SH I UNIT: Edit the number of objects in the page

—VMIM

oA I AUTO: Whether uses LCD keys to edit.

I DEPTH: The current edit depth of edit object.
I LOOP: LOOP edit.

I FLASH: The edit object is flashing or not.

I V: The current value of edit object.

I VMIN: The minimum value of edit object.

1 VMAX: The maximum value of edit object.

236

For example:

You have to edit display pages in LCD software.

Display page 1:

Display page 2:

Display page 3:

Display page 4:

237

Grouping of display pages in display page property:

|I:Ib_iect Froperty

| EmEtE PrnEertE | Display Page Propertw | Variable Pru:-]:-e_rtv I IIEJ““

Dizplay Page Froperty
0 1
1 5
Group Mask . 5
3 7

Display page 1: Display page 1 is divided into O group and 1 group.

Display page 2: Display page 2 is divided into 0 group and 1 group.

Display page 3: Display page 3 is divided into 0 group.

Display page 4: Display page 4 is divided into 0 group.

238

PLC program:

METWORK 0

5Mo.1
| |

LCD_KEY
EN

5M190.0—
5M190. 1+
5M180. 2+
5M180.3+
5M190. 4
SM130.5+

MODIFY
EMTER.
LIP
DOV
LEFT
RIGHT

METWORK 1

M. 1
| |

LCD_PAGE
M

[=

VB200—

|

MASE

VB201—

IMDX

METWORK 2

5Mo.1
| |

LCD_EDIT

VB205—
VE206—
VB207—
VB203—
VB203—
VD210
VD214

EM

IIMIT
ALITO
DEFTH
LOOP
FLASH

WVMIN

VD218

WVMAX

Analysis:

In network 0,the program bi

PLC has ten function keys.Each function key corresponds to a PLC variable.

F1 corresponds to SM191.0
F2 corresponds to SM191.1
F3 corresponds to SM191.2

nds LCD keys and PLC variables.

239

F4 corresponds to SM191.3
ESC corresponds to SM190.0
OK corresponds to SM190.1
UP corresponds to SM190.2
DOWN corresponds to SM190.3
LEFT corresponds to SM190.4
RIGHT corresponds to SM190.5

NETWORK O:

5Mo.1 LCD_KEY
|

5M190.0—MODIFY
5M190.1—ENTER
5M180.2—UP
5M190.3DOWN
5M190.4—LEFT
5M190, 5—RIGHT

MODIFY 1s ESC function key, corresponds to SM190.0

The functions of function keys:

You can customize F1~F4.

ESC is used for modifying values and exiting edit.

OK is used for confirming modified values.

UP and DOWN function keys can toggle display page .They can also increase
or decrease values.

LEFT and RIGHT function keys can be used for toggling edit objects.
The function of NETWORK1 is binding PLC variables and LCD pages.

METWOREK 1

5M0. 1 LCD_PAGE
)

VB 200 —MASE
VB201—INDX

Operation result:

Address Data Type Value
| vB200 | BYTE | 16%01
| vB201 | sinT |0

The display page 1 of the O group is displayed by default.The value of

240

VB200 1s 1.0 bit is equal to 1,so LCD displays 0 group.The value of VB201

is 0, which means the first display page.The first display page is display

page 1.

You can use the program to specify the display group and the display page .

For example:

SM0.0 |1 MOVE_B
-
1 | EN
2N OUTHVB200 |2

SM0.1 0 LCD_PAGE
el
1) EN

VB200 [16202) —MASK

VB201 |1 —{INDX

The LCD will display group 1 and display pageZ2.

I you use LCD function keys to toggle the display pages, the value of VB201

will change.

NETWORK2:

METWORE 2

M0l
I |

LCD_EDIT

EM

VB205—UNIT
VE206—ALTO
VB207—DEFTH
VE203—LOOP
VB209—FLASH
VD210V
VD214—VMIN
VD218 —{VMAX

LCD -EDIT instruction binds the PLC variables and LCD edit states.

241

For example:
When you modify the first variable of display page 1:

Bogocg
hello darks my friend

The instruction will display as follows:
NETWORK 2

SM0.1[0] LCD_EDIT

| En

VB205 [0] —UNIT
VB206 [1] —ALTO
VB207 [1] —{DEPTH
VB203 [0] —LOOP
VB20% [0] —|FLASH

VD210 [0] v
VD214 [-30000] —{VMIN
VD218 [30000] —yMAX

Vb205 = 0 Variable 0,the first variable.

Vb206 =1 It means that you can use LCD function keys to edit variables.
Vb207 =1 It means you can modify single digit.Vb207 = 2,you can modify
single digit and tens digit.

Vb208 = 0 No loop

Vb209 = 0 No flicker

Vd210 = 0 The current value of variable is 0
Vd214 = -30000 The minimum value 1s -30000
Vd218 = 30000 The maximum value is 30000

242

For example:

Modify the value of variable to 161.

METWORK 2

5M0.1 [0] LCD_EDIT

[

VB205 [0] —|UNIT
VB206 [1] —ALTO
VB207 [1] —DEPTH
VB208 [0] —LOOP
VB20% [0] —|FLASH

VD210 [161] v
VD214 [-30000] —{VMIN
VD218 [30000] —{yMAX

For example:

Modify text list

MNETWIORE, 2
SMO0.1[0] LCD _EDIT
|| EN
YB205 [1] —UNIT
YB206 [1] —{AUTD
YB207 [1] —DEPTH
YB208 [1] —LooP
YB209 [0] —FLASH
VD210 [1] v
VD214 [0]—{VMIN
VD218 [1]{VMax
VB205 Variable 1, the second variable.
VB206 I't means that you can use LCD function keys to edit variables.
VB207 Edit depth is 1.
VB208 LOOP
VB209 No flicker
VD210 The current value of variable is 1
VD214 The minimum value is O
VD218 The maximum value is 1

243

10.7.2 CAN, serial port initialization instructions

UART Init CAN_Init

CAN Imit CAN_Init instruction is used to initialize the CAN port.
e I EN: If the input value is 1,the instructionwill initialize
the CAN port.
—PORT DONE— g PORT: port number, 0~1.
R I BR: CAN port baud rate
T UART_Init instruction is used to initialize the serial port.
e - I EN: If the input value is equal to 1,the instruction will
initialize the serial port.
—PORT oonE~ B PORT: port number, 0 - 2.
—ER I BR: Serial port baud rate.
—{perr I DBIT: The number of serial data bit.
:Z;T I PR: Serial port check bit, 0=No parity, 1=0dd check, 2=Parity

check
I SBIT: Stop bit
I DONE: success=1, fail=0

You can also set these parameters in the programming software.

As shown in the following picture:

Communication lﬁ

| Serial Port | Modbus TCP/IP | CAN Kvaser | Canpro | canalyst1 |

Default

Station: [v
Port: | UUSB-SERIAL CH340 (COM1) T
Bus Parameters
Baud Rate: |9800 bps -
Paritv: [NONE -
StopEit: | 1Bt -
[O] I Cancel

244

10.8 Example of serial port free port communication

Program 1:
NETWORE, O
TO TO [1ms]
I i I my TON
1000 —PT
NETWORE 1
™ MOVE_W
| |
i I EMN
4—IM QLT Vw400
MOVE_W
EMN
4—IM QUT—Vw402
MOVE_B
EMN
11HIM OUT—VB404
MOVE_B
EM
22—IN OUT—vB405
MOVE_B
EMN
33N OUTH—VB406
MOVE_B
EMN
HIN OUTH—vB407
UFP_XMT
EM
1PORT
VEB200—TBL
WE400—XMT
INC_W
EM
VW 100 —IN QUT VW 100

245

Explain: Send data 11 22 33 44 per second through port 1.And record the

counts of sending data.

Program 2:
METWORK 2
5M0.0 MOVE_W
| |
| T EM
100—IN OUT—VWwWaoo
UFP_RCV
EM
1HPORT
VBo00—TBL
VBB00—RCY
va00.1 INC_W
| |
| | EM
va00.2 VW 102—IN OUTH—vwi102
| |
] [

Explain: Receive data through port 1.The maximum length of the data is

100 bytes.

246

10.9 Example of CAN free port

MNETWORE O
SMO.0 INC_W
| |
| | EM
VA 200 —IN CUT =YW 200
NETWOREK 1
TO TO [1ms]
I / I m TON
200—FT
MNETWORK 2
To MOVE_B
| |
| | EM
IE0—IM QUTH—MEB20
CFP_Xmt
EM
O—PORT DOME—M15.0
16#000055AA—ID
1—FLAG
S—DLEM
MB20—DAT
MNETWOREK 3
SMO. 1 CFP_Setup
| |
| | EM
o—{porT
0—fEp
0D
0—IDMSE
16503 —TPMSK

247

METWORK 4
SM0.0 CFP_Rcv
| | -
| | EN
0—PORT IDHvD100
FLAG|-VB104
DLEN|-VE 105
DAT|-VB108
DONE}-v30.0
V0.0 3 1 V106.0 Qo.0
| I [l [__al || | | ¢
! [[==D7 | ==B] | ==B7] | | { s)
YD 100 VE104 VB105 1
V106.0 Qo.0
| | ¢
11 {rR)

Explain: The state of the 10.0 i1s transmitted through port 0.Receive data
VB106 through portO. The state of the first bit of VB106 is the state of
Q0.0

248

10.10 MODBUS communication master program

Read multiple hold registers and write multiple hold registers
NETWORK 0

SMO.0 UMB_03
|

1—4PORT LDATVB200
VE100—TBL
4—SLA
108 —ADDR
4—CNT

METWOREK 1

SMO.0 UMB_16
-

1—PORT
VE104—TBL
4—5LA
112—ADDR.
4—CNT
VE200—LDAT

249

10.11 The example of using PID instruction

METWORK

SMO.1 MOVE_R
|

1—IM ouT—vD112

MOVE_R

0.34IM ouTYD116

MOVE_R

400 —IN oUTHVD120

MOVE_R

04IM oUT—vD124

The initialization of PID parameters
VD112 gain

VD116 Sampling time

VD120 Integral time

VD124 Differential time

250

METWOREK 1

SMO.0
| |

Conversion of Process quantity and set value unit

V400 —

N

1_DI

QuT]

VD200

VD200

DI R

OuT]

VD204

VD204

M1
N2

DIV_R

ouT]

VD100

VW 180 —

N

I_DI

OuT]

—vD212

VD212

IN

DIR

OUT]

VD214

VD214

M1
N2

DIV_R

ouT]

VD104

251

NETWORK 2
TO T0 [1ms]
| |
| i | ™ TON
300—PT
NETWORK 3
TO PID
| |
| | EN
VB100—TABLE
1—LOCP
NETWORK 4
T2 T2 [10ms]
| |
| i | ™ TON
400—PT
Call a PID command every 0.3 seconds.

252

The conversion

NETWORK 5
5M0.0 MUL_R
| |
VD108 —{IN1 OUTHVD220
200—IN2
ROUND
EN
VD220 —{IN OUT-vD224
DI I
EN
VD224—{IN OUT-vw228
NETWORK &
T2 Q0.4
| | ¢
| <L] L)
VW22

of output value unit .

253

MODBUS ADDRESS

Bit
Modbus Adr. Modbus code R/W
[10.0--131.7 0--255 02 R
SM SMO0.0--SM551.7 512--4927 02 R
Q Q0.0--Q31.7 0--255 01/05 (15) R/W
M MO0.0--M31.7 512--767 01/05 (15) R/W
\Y \V0.0--V8063.7 768--65279 01/05 (15) R/W
S S0.0--S31.7 65280--65535 01/05 (15) R/W
T TO-T255 256--511 02 R
C CO-T255 5000--5255 02 R
Word
Modbus Adr. Modbus code |R/W
VW VWO0--VW8190 0--8190 03/06 (16) R/W
MW MWO--MW30 8200--8230 03/06 (16) R/W
SMW SMWO0--SMW550 8300--8850 03/06 (16) R/W
SW SWO0--SW30 9000--9030 03/06(16) R/W
T TO-T255 9100--9355 03/06 (16) R/W
C C0-T255 9500--9755 03/06 (16) R/W
AlW AIWO0--AIW178 0--178 04 R
AQW AQWO0--AQW178 200--378 04 R
W IWO--IW30 400--430 04 R
QW QWO0--QW30 500--530 04 R
DWord Modbus Adr.|Address calculationModbus RIW
Range formula code
VD VDO0--VD8188 |{10000--26376 VVD: 10000+(2*No.) |03/(16) R/W
MD MDO--MD28 (30000--30056 MD: 30000+(2*No.) |03/(16) R/W
SMD ngDO"SMDS 31000--32096 |SMD: 31000+(2*N0.)|03/(16) RIW
SD SDO0--SD28 [33000--33056 SD: 33000+(2*No.) |03/(16) R/W
ID IDO--1D28 600--656 ID: 600+(2*No.) 04
QD QDO0--QD28 [700--756 QD: 700+(2*No.) |04

254

For example :

METWOREK O

10.0 UMB_03

O1—PORT LDATHVE200
VB100—TBL
1—5LA
IEADDR

CNT

255

